Nous abordons le problème du consensus par une voie ensembliste, en considérant un objet comme un assemblage de «briques» élémentaires. Une fonction de consensus est neutre s'il existe une famille D d'ensembles telle qu'une brique s appartient au consensus d'un profil si et seulement si l'ensemble des coordonnées des objets contenant s appartient à D. Nous donnons des conditions suffisantes pour que D soit un filtre de treillis. Dans le cas d'un treillis fini, ces conditions s'avèrent être aussi suffisantes. Notre résultat final porte sur le cas d'un sup-demi-treillis distributif fini, dans lequel nous donnons des conditions nécessaires et suffisantes pour que D soit un ultrafiltre.
We use a set theoretic approach to consensus by viewing an object as a set of smaller pieces called “bricks”. A consensus function is neutral if there exists a family D of sets such that a brick s is in the output of a profile if and only if the set of positions with objects that contain s belongs to D. We give sufficient set theoretic conditions for D to be a lattice filter and, in the case of a finite lattice, these conditions turn out to be necessary. Ourfinal result, which involves a finite distributive join semilattice, provides necessary and sufficient conditions for D to be an ultrafilter.
@article{MSH_1995__132__5_0, author = {Crown, G. D. and Janowitz, M.-F. and Powers, Robert}, title = {Further results on neutral consensus functions}, journal = {Math\'ematiques et Sciences humaines}, volume = {132}, year = {1995}, pages = {5-11}, mrnumber = {1393629}, zbl = {0849.90009}, language = {en}, url = {http://dml.mathdoc.fr/item/MSH_1995__132__5_0} }
Crown, G. D.; Janowitz, M.-F.; Powers, R. C. Further results on neutral consensus functions. Mathématiques et Sciences humaines, Tome 132 (1995) pp. 5-11. http://gdmltest.u-ga.fr/item/MSH_1995__132__5_0/
Voting Operators in the Space of Choice Functions, Math. Soc. Sci. 11, 201-242. | MR 842402 | Zbl 0597.90006
, and (1986)Social Choice and Individual Values, 2nd edn. Wiley, New York.
(1962)Arrow's Theorem: Unusual Domain and Extended Codomain, Math. Soc. Sci. 3, 79-89. | MR 665572 | Zbl 0489.90012
(1982)Aggregration of Preferences, Quarterly Journal of Economics, 89, 456-469.
(1975)Neutral consensus functions, Math. Soc. Sci. 20, 231-250. | MR 1212716 | Zbl 0774.90006
, and (1993)An ordered set approach to neutral consensus functions, in E. Diday et al., New Approaches in Classification and Data Analysis, Berlin, Springer Verlag, 102-110. | MR 1415847
, and (1994)Efficient and Binary Consensus Functions on Transitively Valued Relations, Math. Soc. Sci. 8, 45-61. | MR 781659 | Zbl 0566.90003
(1984)Latticial theory of consensus, in W. A. Bar-nett et al., eds.,Social Choice, Welfare and Ethics, Cambridge University Press, 145-160. | Zbl 0941.91029
and (1994)On the Problem of Reconciling Partitions, in Quantitative Sociology, International Perspectives on Mathematical and Statistical Modelling. New York: Academic Press, 441-449. | MR 444120
(1975)Arrowian characterizations of latticial federation consensus functions, Math. Soc. Sci. 20, 51-71. | MR 1072291 | Zbl 0746.90002
(1990)Ordinal Theory of Consensus, R.R. CAMS P.113, Paris, C.A.M.S.
(1995)