An objective and practical method for describing and understanding ratios
Fowler, D. H.
Mathématiques et Sciences humaines, Tome 124 (1993), p. 5-18 / Harvested from Numdam

Cet article explore l'utilisation de l'algorithme euclidien comme moyen très utile pour manipuler les rapports, surtout dans les cas où de bonnes approximations rationnelles sont nécessaires. Cette discussion est illustrée à partir d'une analyse de l'architecture grecque par JJ. Coulton. Cet article veut être un compte-rendu pratique, mais il comprend aussi une discussion de certains aspects théoriques, ainsi que de la relation de cette procédure à une nouvelle interprétation des mathématiques grecques de l'époque de Platon.

This article explores the use of the euclidian algorithm as a most useful way of handling ratios, especially when good rational approximations are required. Illustrations are taken from a discussion of the analysis of greek architecture by J.J Coulton. Although this is intended as a practical account, some discussions of theoretical aspects are included, and also of the relationship of this procedure to a new interpretation of early greek mathematics.

Publié le : 1993-01-01
@article{MSH_1993__124__5_0,
     author = {Fowler, D. H.},
     title = {An objective and practical method for describing and understanding ratios},
     journal = {Math\'ematiques et Sciences humaines},
     volume = {124},
     year = {1993},
     pages = {5-18},
     mrnumber = {1282235},
     zbl = {0835.01001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/MSH_1993__124__5_0}
}
Fowler, D. H. An objective and practical method for describing and understanding ratios. Mathématiques et Sciences humaines, Tome 124 (1993) pp. 5-18. http://gdmltest.u-ga.fr/item/MSH_1993__124__5_0/

Coulton J.J., "Towards Understanding Greek Temple Design: General Considerations ", Annual of the British School of Athens,70 (1975), 59-99; Corrigenda, ibid., 51 (1976), 149-50.

Fletcher T., "Approximating by vectors", Mathematics Teaching 63 (1973), 4-9 & 64 (1973), 42-44.

Fowler D.H., The Mathematics of Plato's Academy: A New Reconstruction, Oxford, Clarendon Press, 1987; revised paperback reprint, 1991. | MR 932963 | Zbl 0627.01002

Fowler D.H., "Logistic and fractions", pp133-147 in Benoit, P., Chemla K., & Ritter J., edd., Histoire de Fractions, Fractions d'Histoire, Basel etc., Birkhäuser, 1992. | MR 1278497 | Zbl 1067.01511

Fowler D.H., "How to find the golden number without really trying", Mathematics Review, 34 (April 1993), 2-7.

Freyl L., "Médiétés et approximations chez Vitruve", Revue Archéologique, 1990, 285-330.

Freyl L., "Pour un modèle du chapiteau ionique vitruvien", Revue Archéologique, 1992, 37-63.

Freyl L., "La transmission d'un canon: les temples ioniques", to appear in Le Projet de Vitruve: Object, Destination et Reception du De Architectura, Rome, Ecole Française de Rome.

Heath T.L., A History of Greek Mathematics, 2 vols., Oxford, Clarendon Press, 1921, reprinted New York, Dover 1981. | JFM 48.0046.01

Herz-Fischler R., A Mathematical History of Division in Extreme and Mean Ratio, Waterloo (Ontario), Wilfred Laurier University Press, 1987. | MR 907871

Herz-Fischler R. "How to find the golden number without really trying", Fibonacci Quarterly, 19 (1981), 406-10.