We discuss a family of discontinuous Petrov-Galerkin (DPG) schemes for quite general partial differential operators. The starting point of our analysis is the DPG method introduced by [Demkowicz et al., SIAM J. Numer. Anal. 49 (2011) 1788-1809; Zitelli et al., J. Comput. Phys. 230 (2011) 2406-2432]. This discretization results in a sparse positive definite linear algebraic system which can be obtained from a saddle point problem by an element-wise Schur complement reduction applied to the test space. Here, we show that the abstract framework of saddle point problems and domain decomposition techniques provide stability and a priori estimates. To obtain efficient numerical algorithms, we use a second Schur complement reduction applied to the trial space. This restricts the degrees of freedom to the skeleton. We construct a preconditioner for the skeleton problem, and the efficiency of the discretization and the solution method is demonstrated by numerical examples.
@article{M2AN_2014__48_5_1473_0, author = {Wieners, Christian and Wohlmuth, Barbara}, title = {Robust operator estimates and the application to substructuring methods for first-order systems}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {48}, year = {2014}, pages = {1473-1494}, doi = {10.1051/m2an/2014006}, mrnumber = {3264362}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2014__48_5_1473_0} }
Wieners, Christian; Wohlmuth, Barbara. Robust operator estimates and the application to substructuring methods for first-order systems. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 48 (2014) pp. 1473-1494. doi : 10.1051/m2an/2014006. http://gdmltest.u-ga.fr/item/M2AN_2014__48_5_1473_0/
[1] First-order system least squares and the energetic variational approach for two-phase flow. J. Comput. Phys. 230 (2011) 6647-6663. | MR 2818617 | Zbl pre05992173
, , , and ,[2] Efficiency based adaptive local refinement for first-order system least-squares formulations. SIAM J. Sci. Comput. 33 (2011) 1-24. | MR 2765484 | Zbl pre05964955
, , , , and ,[3] A one-level additive schwarz preconditioner for a discontinuous petrov-galerkin method. Preprint arXiv:1212.2645 (2012). To appear in the Proceeding of DD21.
, , and ,[4] Finite element methods of least-squares type. SIAM Rev. 40 (1998) 789-837. | MR 1659689 | Zbl 0914.65108
and ,[5] Least-Squares Finite Element Methods, vol. 166 of Appl. Math. Sci. Springer, New York (2009). | MR 2490235 | Zbl 1168.65067
and ,[6] Finite Elements. Theory, fast solvers, and applications in solid mechaics. 3th ed. Cambridge University Press (2007). | Zbl 1118.65117
,[7] A least-squares approach based on a discrete minus one inner product for first order systems. Math. Comput. 66 (1997) 935-955. | MR 1415797 | Zbl 0870.65104
, and ,[8] Mixed and Hybrid Finite Element Methods. Springer (1991). | MR 1115205 | Zbl 0788.73002
and ,[9] A Unified Discontinuous Petrov−Galerkin Method and its Analysis for Friedrichs' Systems. SIAM J. Numer. Anal. 51 (2013) 1933-1956. | MR 3072762 | Zbl 1278.65173
, and ,[10] Error estimates for the ultra weak variational formulation of the Helmholtz equation. Math. Model. Numer. Anal. 42 (2008) 925-940. | Numdam | MR 2473314 | Zbl 1155.65094
and ,[11] First-Order System Least Squares for Second-Order Partial Differential Equations: Part I. SIAM J. Numer. Anal. 31 (1994) 1785-1799. | MR 1302685 | Zbl 0813.65119
, , and ,[12] Robust DPG method for convection-dominated diffusion problems II: Natural inflow condition. Comput. Math. Appl. 67 (2014) 771-795. | MR 3163878 | Zbl 1290.65088
, and ,[13] Adaptive Petrov-Galerkin methods for first order transport equations. SIAM J. Numer. Anal. 50 (2012) 2420-2445. | MR 3022225 | Zbl 1260.65091
, , and ,[14] Double greedy algorithms: reduced basis methods for transport dominated problems (2013). Preprint arXiv:1302.5072. | Numdam | MR 3177860
, and ,[15] Analysis of the DPG method for the Poisson equation. SIAM J. Numer. Anal. 49 (2011) 1788-1809. | MR 2837484 | Zbl 1237.65122
and ,[16] Wavenumber explicit analysis for a DPG method for the multidimensional Helmholtz equation. Comput. Methods Appl. Mech. Engrg. 213 (2012) 126-138. | MR 2880509 | Zbl 1243.76059
, , and ,[17] A class of discontinuous Petrov-Galerkin methods. Part III: Adaptivity. Appl. Numer. Math. 62 (2012) 396-427. | MR 2899253 | Zbl pre06030368
, and ,[18] Robust DPG method for convection-dominated diffusion problems. SIAM J. Numer. Anal. 51 (2013) 2514-2537. | MR 3095479 | Zbl 1290.65088
and ,[19] On stability of discretizations of the Helmholtz equation, in Numerical Analysis of Multiscale Problems, vol. 83 of Lect. Notes Comput. Sci. Engrg. Springer, Berlin (2012) 285-324. | MR 3050917 | Zbl 1248.65115
and ,[20] An analysis of the practical DPG method. Math. Comput. (2013). | MR 3143683 | Zbl 1282.65154
and ,[21] Trefftz method: A general theory. Numer. Methods Partial Differ. Eqs. 16 (2000) 561-580. | MR 1786184 | Zbl 0978.65114
,[22] Enhanced mass conservation in least-squares methods for Navier-Stokes equations. SIAM J. Sci. Comput. 31 (2009) 2303-2321. | MR 2516154 | Zbl 1188.76195
, , , and ,[23] Stability results for the time-harmonic Maxwell equations with impedance boundary conditions. Math. Models Methods Appl. Sci. 21 (2011) 2263-2287. | MR 2860676 | Zbl pre06032265
, and ,[24] Nodal auxiliary space preconditioning in H(curl) and H(div) spaces. SIAM J. Numer. Anal. 45 (2007) 2483-2509. | MR 2361899 | Zbl 1153.78006
and ,[25] Numerical solution of elliptic differential equations by reduction to the interface. Berlin, Springer (2004). | MR 2045003 | Zbl 1043.65128
and ,[26] Stability Estimates and Structural Spectral Properties of Saddle Point Problems. Numer. Math. 124 (2013) 183-213. | MR 3041734 | Zbl 1269.65032
, and ,[27] Inexact data-sparse boundary element tearing and interconnecting methods. SIAM J. Sci. Comput. 29 (2007) 290-314. | MR 2285892 | Zbl 1133.65105
, , and ,[28] On generalized finite element methods. Ph.D. thesis, University of Maryland (1995). | MR 2692949
,[29] Trefftz-Discontinuous Galerkin Methods for Time-Harmonic Wave Problems. Ph.D. thesis, ETH Zürich (2011).
,[30] The DPG method for the Stokes problem ICES Report (2012) 12-22.
, and .[31] The many proofs of an identity on the norm of oblique projections. Numer. Algorithms 42 (2006) 309-323. | MR 2279449 | Zbl 1102.47002
,[32] A geometric data structure for parallel finite elements and the application to multigrid methods with block smoothing. Comput. Visual. Sci. 13 (2010) 161-175. | MR 2645017 | Zbl 1216.65164
,[33] Some observations on Babuška and Brezzi theories. Numer. Math. 94 (2003) 195-202. | MR 1971217 | Zbl 1028.65115
and ,[34] A class of discontinuous Petrov−Galerkin methods. Part IV: Wave propagation. J. Comput. Phys. 230 (2011) 2406-2432. | MR 2772923 | Zbl pre05909482
, , , , and ,