We extend the classical empirical interpolation method [M. Barrault, Y. Maday, N.C. Nguyen and A.T. Patera, An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations. Compt. Rend. Math. Anal. Num. 339 (2004) 667-672] to a weighted empirical interpolation method in order to approximate nonlinear parametric functions with weighted parameters, e.g. random variables obeying various probability distributions. A priori convergence analysis is provided for the proposed method and the error bound by Kolmogorov N-width is improved from the recent work [Y. Maday, N.C. Nguyen, A.T. Patera and G.S.H. Pau, A general, multipurpose interpolation procedure: the magic points. Commun. Pure Appl. Anal. 8 (2009) 383-404]. We apply our method to geometric Brownian motion, exponential Karhunen-Loève expansion and reduced basis approximation of non-affine stochastic elliptic equations. We demonstrate its improved accuracy and efficiency over the empirical interpolation method, as well as sparse grid stochastic collocation method.
@article{M2AN_2014__48_4_943_0, author = {Chen, Peng and Quarteroni, Alfio and Rozza, Gianluigi}, title = {A weighted empirical interpolation method: a priori convergence analysis and applications}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {48}, year = {2014}, pages = {943-953}, doi = {10.1051/m2an/2013128}, zbl = {1304.65097}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2014__48_4_943_0} }
Chen, Peng; Quarteroni, Alfio; Rozza, Gianluigi. A weighted empirical interpolation method: a priori convergence analysis and applications. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 48 (2014) pp. 943-953. doi : 10.1051/m2an/2013128. http://gdmltest.u-ga.fr/item/M2AN_2014__48_4_943_0/
[1] An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. Anal. Numér. 339 (2004) 667-672. | MR 2103208 | Zbl 1061.65118
, , and ,[2] An optimal control approach to a posteriori error estimation in finite element methods. Acta Numerica 10 (2001) 1-102. | MR 2009692 | Zbl 1105.65349
and ,[3] Convergence rates for greedy algorithms in reduced basis methods. SIAM J. Math. Anal. 43 (2011) 1457-1472. | MR 2821591 | Zbl 1229.65193
, , , , and ,[4] Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32 (2010) 2737-2764. | MR 2684735 | Zbl 1217.65169
and ,[5] Accurate and efficient evaluation of failure probability for partial differential equations with random input data. Comput. Methods Appl. Mech. Eng. 267 (2013) 233-260. | MR 3127301 | Zbl 1286.65156
and ,[6] Comparison between reduced basis and stochastic collocation methods for elliptic problems. J. Sci. Comput. 59 (2014) 187-216. | MR 3167732 | Zbl 1301.65007
, and ,[7] A weighted reduced basis method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 51 (2013) 3163-3185. | MR 3129759 | Zbl 1288.65007
, and ,[8] Constructive Approximation. Springer (1993). | MR 1261635 | Zbl 0797.41016
and ,[9] Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality. Acta Numerica 11 (2002) 145-236. | MR 2009374 | Zbl 1105.65350
and ,[10] Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. ESAIM: M2AN 41 (2007) 575-605. | Numdam | MR 2355712 | Zbl 1142.65078
, , and ,[11] On the approximation of stability factors for general parametrized partial differential equations with a two-level affine decomposition. ESAIM: M2AN 46 (2012) 1555-1576. | Numdam | MR 2996340 | Zbl 1276.65069
, and ,[12] Parametric free-form shape design with PDE models and reduced basis method. Comput. Methods Appl. Mech. Eng. 199 (2010) 1583-1592. | MR 2630164 | Zbl 1231.76245
and ,[13] A general, multipurpose interpolation procedure: the magic points. Commun. Pure Appl. Anal. 8 (2009) 383-404. | MR 2449115 | Zbl 1184.65020
, , and ,[14] Model reduction techniques for fast blood flow simulation in parametrized geometries. Int. J. Numer. Methods Biomedical Eng. 28 (2012) 604-625. | MR 2946552
, and ,[15] A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46 (2008) 2309-2345. | MR 2421037 | Zbl 1176.65137
, and ,[16] Stochastic Differential Equations: An Introduction with Applications. Springer (2010). | MR 1619188 | Zbl 0567.60055
,[17] N-widths in Approximation Theory. Springer (1985). | MR 774404 | Zbl 0551.41001
,[18] Certified reduced basis approximation for parametrized partial differential equations and applications. J. Math. Industry 1 (2011) 1-49. | MR 2824231 | Zbl 1273.65148
, and ,[19] Numerical Mathematics. Springer (2007). | MR 2265914 | Zbl 1136.65001
, and ,[20] Reduced basis methods for Stokes equations in domains with non-affine parameter dependence. Comput. Vis. Sci. 12 (2009) 23-35. | MR 2489209
,[21] Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Archives Comput. Meth. Eng. 15 (2008) 229-275. | MR 2430350 | Zbl pre05344486
, and ,[22] Affine decompositions of parametric stochastic processes for application within reduced basis methods. In Proc. MATHMOD, 7th Vienna International Conference on Mathematical Modelling (2012).
and ,