A reduced model for Darcy's problem in networks of fractures
Formaggia, Luca ; Fumagalli, Alessio ; Scotti, Anna ; Ruffo, Paolo
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 48 (2014), p. 1089-1116 / Harvested from Numdam

Subsurface flows are influenced by the presence of faults and large fractures which act as preferential paths or barriers for the flow. In literature models were proposed to handle fractures in a porous medium as objects of codimension 1. In this work we consider the case of a network of intersecting fractures, with the aim of deriving physically consistent and effective interface conditions to impose at the intersection between fractures. This new model accounts for the angle between fractures at the intersections and allows for jumps of pressure across intersections. This fact permits to describe the flow when fractures are characterized by different properties more accurately with respect to other models that impose pressure continuity. The main mathematical properties of the model, derived in the two-dimensional setting, are analyzed. As concerns the numerical discretization we allow the grids of the fractures to be independent, thus in general non-matching at the intersection, by means of the extended finite element method (XFEM). This increases the flexibility of the method in the case of complex geometries characterized by a high number of fractures.

Publié le : 2014-01-01
DOI : https://doi.org/10.1051/m2an/2013132
Classification:  65N30,  76S05,  86A60
@article{M2AN_2014__48_4_1089_0,
     author = {Formaggia, Luca and Fumagalli, Alessio and Scotti, Anna and Ruffo, Paolo},
     title = {A reduced model for Darcy's problem in networks of fractures},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {48},
     year = {2014},
     pages = {1089-1116},
     doi = {10.1051/m2an/2013132},
     mrnumber = {3264347},
     zbl = {1299.76254},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2014__48_4_1089_0}
}
Formaggia, Luca; Fumagalli, Alessio; Scotti, Anna; Ruffo, Paolo. A reduced model for Darcy's problem in networks of fractures. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 48 (2014) pp. 1089-1116. doi : 10.1051/m2an/2013132. http://gdmltest.u-ga.fr/item/M2AN_2014__48_4_1089_0/

[1] R.T. Adams, Sobolev Spaces, vol. 65. Pure and Applied Mathematics. Academic Press (1975). | Zbl 0314.46030

[2] P.M. Adler and J.-F. Thovert, Fractures and fracture networks. Springer (1999).

[3] P.M. Adler, J.-F. Thovert and V.V. Mourzenko, Fractured porous media. Oxford University Press (2012). | MR 3237557 | Zbl 1266.74002

[4] C. Alboin, J. Jaffré, J.E. Roberts and C. Serres, Modeling fractures as interfaces for flow and transport in porous media, in Fluid flow and transport in porous media: mathematical and numerical treatment (South Hadley, MA, 2001), vol. 295. Contemp. Math.. Amer. Math. Soc. Providence, RI (2002) 13-24. | MR 1911534 | Zbl 1102.76331

[5] C. Alboin, J. Jaffré, J.E. Roberts, X. Wang and C. Serres. Domain decomposition for some transmission problems in flow in porous media, vol. 552. Lect. Notes Phys. Springer, Berlin (2000) 22-34. | MR 1876007 | Zbl 1010.76050

[6] L. Amir, M. Kern, V. Martin and J.E. Roberts, Décomposition de domaine et préconditionnement pour un modèle 3D en milieu poreux fracturé, in Proc. of JANO 8, 8th Conf. Numer. Anal. Optim. (2005).

[7] P. Angot, F. Boyer and F. Hubert, Asymptotic and numerical modelling of flows in fractured porous media. ESAIM: M2AN 43 (2009) 239-275. | Numdam | MR 2512496 | Zbl 1171.76055

[8] J. Bear, C.-F. Tsang and G. De Marsily, Flow and contaminant transport in fractured rock. Academic Press, San Diego (1993).

[9] R. Becker, E. Burman and P. Hansbo, A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity. Comput. Methods Appl. Mech. Engrg. 198 (2009) 3352-3360. | MR 2571349 | Zbl 1230.74169

[10] B. Berkowitz, Characterizing flow and transport in fractured geological media: A review. Adv. Water Resources 25 (2002) 861-884.

[11] S. Berrone, S. Pieraccini and S. Scialò, On simulations of discrete fracture network flows with an optimization-based extended finite element method. SIAM J. Sci. Comput. 35 (2013) 908-935. | MR 3038026 | Zbl 1266.65187

[12] S. Berrone, S. Pieraccini and S. Scialò, A PDE-constrained optimization formulation for discrete fracture network flows. SIAM J. Sci. Comput. 35 (2013). | MR 3038028 | Zbl 1266.65188

[13] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations. Springer (2010). | MR 2759829 | Zbl 1220.46002

[14] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, vol. 15. Comput. Math. Springer Verlag, Berlin (1991). | MR 1115205 | Zbl 0788.73002

[15] C. D'Angelo and A. Scotti, A mixed finite element method for Darcy flow in fractured porous media with non-matching grids. ESAIM: M2AN 46 (2012) 465-489. | Numdam | Zbl 1271.76322

[16] A. Ern and J.L. Guermond, Theory and practice of finite elements. Appl. Math. Sci. Springer (2004). | MR 2050138 | Zbl 1059.65103

[17] B. Faybishenko, P.A. Witherspoon and S.M. Benson, Dynamics of fluids in fractured rock, vol. 122. Geophysical monographs. American geophysical union (2000).

[18] A. Fumagalli, Numerical Modelling of Flows in Fractured Porous Media by the XFEM Method. Ph.D. thesis, Politecnico di Milano (2012).

[19] A. Fumagalli and A. Scotti, A numerical method for two-phase ow in fractured porous media with non-matching grids, in vol. 62 of Adv. Water Resources (2013) 454-464.

[20] A. Fumagalli and A. Scotti, A reduced model for flow and transport in fractured porous media with non-matching grids, Numer. Math. Advanced Applications 2011. Edited by A. Cangiani, R.L. Davidchack, E. Georgoulis, A.N. Gorban, J. Levesley and M.V. Tretyakov. Springer Berlin, Heidelberg (2013) 499-507. | Zbl 1273.76398

[21] B. Gong, G. Qin, C. Douglas and S. Yuan, Detailed modeling of the complex fracture network of shale gas reservoirs. SPE Reservoir Evaluation and Engrg. (2011).

[22] A. Hansbo and P. Hansbo, A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput. Methods Appl. Mech. Engrg. 193 (2004) 3523-3540. | MR 2075053 | Zbl 1068.74076

[23] M. Hussein and D. Roussos, Discretizing two-dimensional complex fractured fields for incompressible two-phase flow. Int. J. Numer. Methods Fluids (2009). | Zbl pre05862329

[24] J. Jaffré, V. Martin and J.E. Roberts, Generalized cell-centered finite volume methods for flow in porous media with faults, in Finite volumes for complex applications III (Porquerolles, 2002). Hermes Sci. Publ., Paris (2002) 343-350. | MR 2007435 | Zbl 1177.76231

[25] J. Jaffré, M. Mnejja and J.E. Roberts, A discrete fracture model for two-phase flow with matrix-fracture interaction. Procedia Comput. Sci. 4 (2011) 967-973.

[26] M. Karimi-Fard, L.J. Durlofsky and K. Aziz, An Efficient Discrete-Fracture Model Applicable for General-Purpose Reservoir Simulators. SPE J. 9 (2004) 227-236.

[27] V. Martin, J. Jaffré and J.E. Roberts, Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26 (2005) 1667-1691. | MR 2142590 | Zbl 1083.76058

[28] H. Mustapha, A new approach to simulating flow in discrete fracture networks with an optimized mesh. SIAM J. Sci. Comput. 29 (2007) 1439-1459. | MR 2341795 | Zbl 1251.76056

[29] A. Quarteroni and A. Valli, Numerical approximation of partial differential equations, vol. 23. Springer Ser. Comput. Math. Springer-Verlag, Berlin (1994). | MR 1299729 | Zbl 0803.65088

[30] M. Sahimi, Flow and transport in porous media and fractured rock. Wiley-VCH, Weinheim (2011). | Zbl 1219.76002