This paper is devoted to the definition, analysis and implementation of semi-Lagrangian methods as they result from particle methods combined with remeshing. We give a complete consistency analysis of these methods, based on the regularity and momentum properties of the remeshing kernels, and a stability analysis of a large class of second and fourth order methods. This analysis is supplemented by numerical illustrations. We also describe a general approach to implement these methods in the context of hybrid computing and investigate their performance on GPU processors as a function of their order of accuracy.
@article{M2AN_2014__48_4_1029_0, author = {Cottet, G.-H. and Etancelin, J.-M. and Perignon, F. and Picard, C.}, title = {High order semi-lagrangian particle methods for transport equations: numerical analysis and implementation issues}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {48}, year = {2014}, pages = {1029-1060}, doi = {10.1051/m2an/2014009}, mrnumber = {3264345}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2014__48_4_1029_0} }
Cottet, G.-H.; Etancelin, J.-M.; Perignon, F.; Picard, C. High order semi-lagrangian particle methods for transport equations: numerical analysis and implementation issues. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 48 (2014) pp. 1029-1060. doi : 10.1051/m2an/2014009. http://gdmltest.u-ga.fr/item/M2AN_2014__48_4_1029_0/
[1] Multilevel adaptive particle methods for convection-diffusion equations. SIAM Multiscale Model. Simul. 4 (2005) 328-357. | MR 2164720 | Zbl 1088.76055
, and ,[2] A lagrangian particle-wavelet method. SIAM Multiscale Model. Simul. 5 (2006) 980-995. | MR 2272307 | Zbl 1122.65085
and ,[3] A portable opencl implementation of generic particle-mesh and mesh-particle interpolation in 2d and 3d. Parallel Comput. 39 (2013) 94-111.
, and ,[4] Numerical study of slightly viscous flow. J. Fluid Mech. 57 (1973) 785-796. | MR 395483
,[5] Combining the vortex-in-cell and parallel fast multipole methods for efficient domain decomposition simulations. J. Comput. Phys. 227 (2008) 9091-9120. | MR 2463200 | Zbl pre05355893
, and ,[6] The remapped particle-mesh semi-lagrangian advection scheme. Q. J. Meteorol. Soc. 133 (2007) 251-260.
, and ,[7] Vortex methods. Cambridge University Press (2000). | MR 1755095 | Zbl 0953.76001
and ,[8] Particle methods revisited: a class of high order finite-difference methods. C.R. Math. 343 (2006) 51-56. | MR 2241959 | Zbl 1096.65084
and ,[9] A forward semi-lagrangian method for the numerical solution of the vlasov equation. Comput. Phys. Commun. 180 (2009) 1730-1745. | MR 2678446 | Zbl 1197.82012
, and ,[10] Simulation Using Particles. Inst. Phys. Publ. (1988).
and ,[11] PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU Run-Time Code Generation. Parallel Comput. 38 (2012) 157-174.
, , , , and ,[12] Inviscid axisymmetrization of an elliptical vortex. J. Comput. Phys. 138 (1997) 821-857. | MR 1607496 | Zbl 0902.76080
,[13] High resolution simulation of the flow around an impulsively started cylinder using vortex methods. J. Fluid Mech. 296 (1995) 1-38. | Zbl 0849.76061
and ,[14] Méthodologie et environnement de développement orientés objets: de l'analyse mathématique à la programmation. MATAPLI 70 (2003) 79-92.
, and ,[15] G Balarac, and G.-H. Cottet, Hybrid spectral particle method for turbulent transport of passive scalar. J. Comput. Phys. 260 (2014) 127-142. | MR 3151833
,[16] Computing three-dimensional incompressible flows with vortex elements. Annu. Rev. Fluid Mech. 17 (1985) 523-559. | Zbl 0596.76026
.[17] High-resolution conservative algorithms for advection in incompressible flow. SIAM J. Numer. Anal. 33 (1996) 627-665. | MR 1388492 | Zbl 0852.76057
,[18] Accurate, non-oscillatory, remeshing schemes for particle methods. J. Comput. Phys. 231 (2012) 152-172. | MR 2846992 | Zbl pre06044227
and ,[19] Extrapolating B splines for interpolation. J. Comput. Phys. 60 (1985) 253-262. | MR 805872 | Zbl 0588.41005
,[20] An introduction to sph. Comput. Phys. Commun. 48 (1988) 89-96. | Zbl 0673.76089
,[21] The OpenCL Specification. Khronos OpenCL Working Group (2011).
,[22] Blending finite-difference and vortex methods for incompressible flow computations. SIAM J. Sci. Comput. 22 (2000) 1655-1674. | MR 1813291 | Zbl 0993.76057
, and ,[23] Analysis of a new class of forward semi-lagrangian schemes for the 1d Vlasov-Poisson equations. Numer. Math. 118 (2011) 329-366. | MR 2800712 | Zbl 1284.65145
and ,[24] GPU accelerated simulations of bluff body flows using vortex methods. J. Comput. Phys. 229 (2010) 3316-3333. | MR 2601102 | Zbl pre05693261
, , and ,[25] Mesh-particle interpolations on graphics processing units and multicorecentral processing units. Philosophical Transactions of the Royal Society A: Mathematical, Phys. Engrg. Sci. 369 (2011) 2164-2175. | MR 2795279 | Zbl 1223.68122
, and ,[26] Vortex methods for incompressible flow simulations on the GPU. Visual Comput. 24 (2008) 699-708.
and ,[27] Optimizing matrix transpose in cuda. NVIDIA CUDA SDK Application Note (2009).
and ,[28] PPM-a highly efficient parallel particle-mesh library for the simulation of continuum systems. J. Comput. Phys. 215 (2006) 566-588. | Zbl 1173.76398
, , , , and ,[29] Contribution to the problem of approximation of equidistant data by analytic functions. Q. Appl. Math. 4 (1946) 45-99. | MR 15914 | Zbl 0061.28804
,[30] Towards accelerating smoothed particle hydrodynamics simulations for free-surface flows on multi-gpu clusters. J. Parallel Distrib. Comput. 73 (2012) 1483-1493.
, , and ,[31] GPU-accelerated numerical simulations of the knudsen gas on time- dependent domains. Comput. Phys. Commun. 184 (2013) 532-536. | MR 3007037 | Zbl pre06381377
and ,[32] Petascale turbulence simulation using a highly parallel fast multipole method. Comput. Phys. Commun. 184 (2013) 445-455. | MR 3007029
, , and ,[33] Fast tridiagonal solvers on the GPU. SIGPLAN Not. 45 (2010) 127-136.
, and ,