A new class of history-dependent quasivariational inequalities was recently studied in [M. Sofonea and A. Matei, History-dependent quasivariational inequalities arising in contact mechanics. Eur. J. Appl. Math. 22 (2011) 471-491]. Existence, uniqueness and regularity results were proved and used in the study of several mathematical models which describe the contact between a deformable body and an obstacle. The aim of this paper is to provide numerical analysis of the quasivariational inequalities introduced in the aforementioned paper. To this end we introduce temporally semi-discrete and fully discrete schemes for the numerical approximation of the inequalities, show their unique solvability, and derive error estimates. We then apply these results to a quasistatic frictional contact problem in which the material's behavior is modeled with a viscoelastic constitutive law, the contact is bilateral, and friction is described with a slip-rate version of Coulomb's law. We discuss implementation of the corresponding fully-discrete scheme and present numerical simulation results on a two-dimensional example.
@article{M2AN_2014__48_3_919_0, author = {Kazmi, Kamran and Barboteu, Mikael and Han, Weimin and Sofonea, Mircea}, title = {Numerical analysis of history-dependent quasivariational inequalities with applications in contact mechanics}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {48}, year = {2014}, pages = {919-942}, doi = {10.1051/m2an/2013127}, mrnumber = {3264340}, zbl = {1292.65074}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2014__48_3_919_0} }
Kazmi, Kamran; Barboteu, Mikael; Han, Weimin; Sofonea, Mircea. Numerical analysis of history-dependent quasivariational inequalities with applications in contact mechanics. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 48 (2014) pp. 919-942. doi : 10.1051/m2an/2013127. http://gdmltest.u-ga.fr/item/M2AN_2014__48_3_919_0/
[1] A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput. Methods Appl. Mech. Eng. 92 (1991) 353-375. | MR 1141048 | Zbl 0825.76353
and ,[2] Variational and Quasivariational Inequalities: Applications to Free-Boundary Problems. John Wiley, Chichester (1984). | MR 745619 | Zbl 0551.49007
and ,[3] Modelling and analysis of the unilateral contact of a piezoelectric body with a conductive support. J. Math. Anal. Appl. 358 (2009) 110-124. | MR 2527585 | Zbl 1168.74039
and ,[4] Analysis and numerical approach of a piezoelectric contact problem. Annals of the Academy of Romanian Scientists, Series on Mathematics and its Applications 1 (2009) 7-31. | MR 2660410 | Zbl pre05819255
and ,[5] Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, 3rd edn. Cambridge University Press, Cambridge (2007). | Zbl 1118.65117
,[6] The Mathematical Theory of Finite Element Methods, 3rd edn. Springer-Verlag, New York (2008). | MR 2373954 | Zbl 0804.65101
and ,[7] Equations et inéquations non linéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier 18 (1968) 115-175. | Numdam | MR 270222 | Zbl 0169.18602
,[8] Basic error estimates for elliptic problems, in Handbook of Numerical Analysis, vol. II, edited by P.G. Ciarlet and J.-L. Lions. North-Holland, Amsterdam (1991) 17-351. | MR 1115237 | Zbl 0875.65086
,[9] Inequalities in Mechanics and Physics. Springer-Verlag, Berlin (1976). | MR 521262 | Zbl 0331.35002
and ,[10] Numerical Methods for Nonlinear Variational Problems. Springer-Verlag, New York (1984). | Zbl 1139.65050
,[11] Unilateral Contact Problems: Variational Methods and Existence Theorems, vol. 270, Pure Appl. Math. Chapman/CRC Press, New York (2005). | Zbl 1079.74003
, and ,[12] Computational plasticity: the variational basis and numerical analysis. Comput. Mech. Adv. 2 (1995) 283-400. | MR 1361227 | Zbl 0847.73078
and ,[13] Plasticity: Mathematical Theory and Numerical Analysis, 2nd edn. Springer-Verlag, New York (2013). | MR 3012574 | Zbl 1258.74002
and ,[14] Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity. In vol. 30, Stud. Adv. Math. American Mathematical Society, Providence, RI-International Press, Sommerville, MA (2002). | MR 1935666 | Zbl 1013.74001
and ,[15] Finite Element Method for Hemivariational Inequalities. Theory, Methods Appl. Kluwer Academic Publishers, Boston, Dordrecht, London (1999). | MR 1784436 | Zbl 0949.65069
, and ,[16] Solution of Variational Inequalities in Mechanics. Springer-Verlag, New York (1988). | MR 952855 | Zbl 0654.73019
, , and ,[17] On the discretization of contact problems in elastodynamics. Lect. Notes Appl. Comput. Mech. 27 (2006) 31-38. | Zbl 1194.74417
, , and ,[18] Hybrid discretization of the Signorini problem with Coulomb friction. Theoretical aspects and comparison of some numerical solvers. Appl. Numer. Math. 56 (2006) 163-192. | MR 2200937 | Zbl 1089.74046
, and ,[19] Theory of variational inequalities with applications to problems of flow through porous media. Int. J. Engng. Sci. 18 (1980) 1173-1284. | MR 659007 | Zbl 0444.76069
and ,[20] Contact Problems in Elasticity. SIAM, Philadelphia (1988). | MR 961258 | Zbl 0685.73002
and ,[21] An Introduction to Variational Inequalities and their Applications. In vol. 31, Classics Appl. Math. SIAM, Philadelphia (2000). | MR 1786735 | Zbl 0988.49003
and ,[22] Computational contact and impact mechanics. Springer, Berlin (2002). | MR 1902698 | Zbl 0996.74003
,[23] J.A.C. Martins and M.D.P. Monteiro Marques, eds., Contact Mechanics. Kluwer, Dordrecht (2002). | MR 1968651
[24] Numerical treatment of problems involving nonmonotone boundary or stress-strain laws. Comput. Structures 64 (1997) 553-565. | Zbl 0918.73363
and ,[25] The search for substationary points in the unilateral contact problems with nonmonotone friction. Math. Comput. Modelling 28 (1998) 341-358. | MR 1648757 | Zbl 1126.74481
and ,[26] Inequality Problems in Mechanics and Applications. Birkhäuser, Boston, 1985. | MR 896909 | Zbl 0579.73014
,[27] Contact Mechanics. Plenum Press, New York (1995).
, and ,[28] Recent advances in contact mechanics, Special issue of Math. Comput. Modelling 28 (4-8) (1998). | MR 1616376 | Zbl 1126.74480
, ed.,[29] Models and Analysis of Quasistatic Contact. Variational Methods. In vol. 655, Lect. Notes Phys. Springer, Berlin (2004). | Zbl 1069.74001
, and ,[30] A fixed point result with applications in the study of viscoplastic frictionless contact problems. Commun. Pure Appl. Anal. 7 (2008) 645-658. | MR 2379447 | Zbl 1171.47047
, and ,[31] Analysis and Approximation of Contact Problems with Adhesion or Damage. Chapman & Hall/CRC, New York (2006). | MR 2183435 | Zbl 1089.74004
, and ,[32] Variational Inequalities with Applications. A Study of Antiplane Frictional Contact Problems. vol. 18, Adv. Mech. Math. Springer, New York (2009). | MR 2488869 | Zbl 1195.49002
and ,[33] History-dependent quasivariational inequalities arising in contact mechanics. Eur. J. Appl. Math. 22 (2011) 471-491. | MR 2834015 | Zbl 1226.49012
and ,[34] The Mechanics of Earthquakes and Faulting. Cambridge University Press (1990).
,[35] Comparison of two methods for the solution of a class of nonconvex energy problems using convex minimization algorithms. Comput. Struct. 57 (1995) 959-971. | MR 1352307 | Zbl 0924.73322
, , , and ,[36] P. Wriggers and U. Nackenhorst, eds., Analysis and Simulation of Contact Problems. In vol. 27, Lect. Notes Appl. Comput. Mech. Springer, Berlin (2006).
[37] Computational Contact Mechanics. Wiley, Chichester (2002).
,