Interface model coupling via prescribed local flux balance
Ambroso, Annalisa ; Chalons, Christophe ; Coquel, Frédéric ; Galié, Thomas
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 48 (2014), p. 895-918 / Harvested from Numdam

This paper deals with the non-conservative coupling of two one-dimensional barotropic Euler systems at an interface at x = 0. The closure pressure laws differ in the domains x < 0 and x > 0, and a Dirac source term concentrated at x = 0 models singular pressure losses. We propose two numerical methods. The first one relies on ghost state reconstructions at the interface while the second is based on a suitable relaxation framework. Both methods satisfy a well-balanced property for stationary solutions. In addition, the second method preserves mass conservation and exactly restores the prescribed singular pressure drops for both unsteady and steady solutions.

Publié le : 2014-01-01
DOI : https://doi.org/10.1051/m2an/2013125
Classification:  35L50,  35L60,  35L65,  35L67,  35L81,  76M12
@article{M2AN_2014__48_3_895_0,
     author = {Ambroso, Annalisa and Chalons, Christophe and Coquel, Fr\'ed\'eric and Gali\'e, Thomas},
     title = {Interface model coupling via prescribed local flux balance},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {48},
     year = {2014},
     pages = {895-918},
     doi = {10.1051/m2an/2013125},
     zbl = {1292.35166},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2014__48_3_895_0}
}
Ambroso, Annalisa; Chalons, Christophe; Coquel, Frédéric; Galié, Thomas. Interface model coupling via prescribed local flux balance. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 48 (2014) pp. 895-918. doi : 10.1051/m2an/2013125. http://gdmltest.u-ga.fr/item/M2AN_2014__48_3_895_0/

[1] M.S. Adimurthi and G.D.V. Gowda, Optimal entropy solutions for conservation laws with discontinuous flux-functions. J. Hyperbolic Differ. Equ. 2 (2005) 783-837. | MR 2195983 | Zbl 1093.35045

[2] D. Amadori, L. Gosse, G. Graziano, Godunov-type approximation for a general resonant balance law with large data. J. Differ. Equ. 198 (2004) 233-274. | MR 2038581 | Zbl 1058.35156

[3] A. Ambroso, C. Chalons, F. Coquel, E. Godlewski, F. Lagoutiere, P.-A. Raviart and N. Seguin, The coupling of homogeneous models for two-phase flows. Int. J. Finite Volumes 4 (2007) 1-39. | MR 2465468

[4] A. Ambroso, C. Chalons, F. Coquel, E. Godlewski, F. Lagoutiere, P.-A. Raviart and N. Seguin, Coupling of general Lagrangian systems. Math. Comput. 77 (2008) 909-941. | MR 2373185 | Zbl 1149.35380

[5] A. Ambroso, J.-M. Hérard and O. Hurisse, A method to couple HEM and HRM two-phase flow models. Comput. Fluids 38 (2009) 738-756. | MR 2645675 | Zbl 1242.76326

[6] E. Audusse and B. Perthame, Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies. Proc. Roy. Soc. Edinburgh Sect. A 135 (2005) 253-265. | MR 2132749 | Zbl 1071.35079

[7] F. Bachmann and J. Vovelle, Existence and uniqueness of entropy solution of scalar conservation laws with a flux function involving discontinuous coefficients. Commun. Partial Differential Equations 31 (2006) 371-395. | MR 2209759 | Zbl 1102.35064

[8] D. Bestion, M. Boucker, P. Boudier, P. Fillion, M. Grandotto, A. Guelfi, J.M. Hérard, E. Hervieu, P. Péturaud, Neptune: a new software platform for advanced nuclear thermal hydraulics. Nuclear Science and Engineering 156 (2007) 281-324.

[9] F. Bouchut, Nonlinear stability of Finite volume methods for hyperbolic conservation laws, and well-balanced schemes for sources. Frontiers in Mathematics, Birkhauser (2004). | MR 2128209 | Zbl 1086.65091

[10] B. Boutin, C. Chalons and P.A. Raviart, Existence result for the coupling problem of two scalar conservation laws with Riemann initial data. Math. Models Methods Appl. Sci. 20 (2010) 1859-1898. | MR 2735916 | Zbl 1211.35017

[11] B. Boutin, F. Coquel and P.G. Lefloch, Coupling techniques for nonlinear hyperbolic equations. I. Self-similar diffusion for thin interfaces. Proc. Roy. Soc. Edinburgh Sect. A 141 (2011) 921-956. | MR 2838361 | Zbl 1252.35188

[12] M. Bucci and P. Fillion, Analysis of the NUPEC PSBT Tests with FLICA-OVAP. Science and Technology of Nuclear Installations. Article ID 2012 (2012) 436142.

[13] R. Bürger and K.H. Karlsen, Conservation laws with discontinuous flux: a short introduction. J. Engrg. Math. 60 (2008) 241-247. | MR 2396483 | Zbl 1138.35365

[14] R. Bürger, K.H. Karlsen and J.D. Towers, An Engquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections. SIAM J. Numer. Anal. 47 (2009) 1684-1712. | MR 2505870 | Zbl 1201.35022

[15] C. Chalons, P.-A. Raviart and N. Seguin, The interface coupling of the gas dynamics equations. Quaterly of Applied Mathematics 66 (2008) 659-705. | MR 2465140 | Zbl 1157.76039

[16] C.M. Dafermos, Solution of the Riemann problem for a class of hyperbolic systems of conservation laws by the viscosity method. Arch. Rational Mech. Anal. 52 (1973) 1-9. | MR 340837 | Zbl 0262.35034

[17] S. Diehl, On scalar conservation laws with point source and discontinuous flux function. SIAM J. Math. Anal. 26 (1995) 1425-1451. | MR 1356452 | Zbl 0852.35094

[18] S. Diehl, Scalar conservation laws with discontinuous flux function. I. The viscous profile condition, Commun. Math. Phys. 176 (1996) 23-44. | MR 1372816 | Zbl 0845.35067

[19] W.H. Hager, Wastewater Hydraulics, Theory and Practice. Springer (2010).

[20] T. Galié, Couplage interfacial de modèles pour la thermoohydraulique des réacteurs, Ph.D. thesis, Université Pierre et Marie Curie Paris 6 (2008).

[21] T. Gimse and N.H. Risebro, Solution of the Cauchy problem for a conservation law with a discontinuous flux function. SIAM J. Math. Anal. 23 (1992) 635-648. | MR 1158825 | Zbl 0776.35034

[22] J. Glimm, D. Marchesin and O. Mcbryan, Numerical method for two phase flow with unstable interface. J. Comput. Phys. 39 (1981) 179-200. | MR 608722 | Zbl 0469.76079

[23] P. Goatin and P.G. Lefloch, The Riemann problem for a class of resonant hyperbolic systems of balance laws. Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004) 881-902. | Numdam | MR 2097035 | Zbl 1086.35069

[24] E. Godlewski, K.-C. Le Thanh and P.-A. Raviart, The numerical interface coupling of nonlinear hyperbolic systems of conservation laws. II. The case of systems. M2AN Math. Model. Numer. Anal. 39 (2005) 649-692. | Numdam | MR 2165674 | Zbl 1095.65084

[25] E. Godlewski and P.-A. Raviart, The numerical interface coupling of nonlinear hyperbolic systems of conservation laws. I. The scalar case. Numer. Math. 97 (2004) 81-130. | MR 2045460 | Zbl 1063.65080

[26] L. Gosse, A well-balanced scheme using non-conservative products designed for hyperbolic systems of conservation laws with source terms. Math. Models Methods Appl. Sci. 11 (2001) 339-365. | MR 1820677 | Zbl 1018.65108

[27] L. Gosse, Localization effects and measure source terms in numerical schemes for balance laws. Math. Comp. 71 (2001) 553-582. | MR 1885615 | Zbl 0997.65108

[28] J.M. Greenberg and A.Y. Leroux, A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33 (1996) 1-16. | MR 1377240 | Zbl 0876.65064

[29] E. Isaacson and B.J. Temple, Nonlinear resonance in systems of conservation laws. SIAM J. Appl. Math. 52 (1992) 1260-1278. | MR 1182123 | Zbl 0794.35100

[30] J.M. Greenberg, A.Y.L. Roux, R. Baraille and A. Noussair, Analysis and approximation of conservation laws with source terms. SIAM J. Numer. Anal. 34 (1997) 1980-2007. | MR 1472206 | Zbl 0888.65100

[31] J.-M. Hérard, Schemes to couple flows between free and porous medium. Proceedings of AIAA (2005) 2005-4861.

[32] J.-M. Hérard and O. Hurisse, Coupling two and one-dimensional models through a thin interface. Proceedings of AIAA (2005) 2005-4718.

[33] J.-M. Hérard and O. Hurisse, Boundary conditions for the coupling of two-phase flow models. 18th AIAA CFD conference.

[34] I.E. Idel'Cik, Memento des pertes de charges. Coefficients de pertes de charges singulières et de pertes de charges par frottement. Collection Direction des Etudes et Recherches d'EDF. Eyrolles [in French] (1986).

[35] S. Jin and Z. Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Comm. Pure Appl. Math. 48 (1995) 235-276. | MR 1322811 | Zbl 0826.65078

[36] V.G. Kourakos, P. Rambaud, S. Chabane and J.M. Buchlin, Modeling of pressure drop in two-phase flow in singular geometries. 6th International Symposium on Multiphase Flow, Heat Mass Transfert and Energy Conservation. Xi'an, China, 11-15 July 2009, Paper No MN-30, 2009.

[37] D.S. Miller (Ed.), Discharge Characteristics: IAHR Hydraulic Structures Design Manuals 8. Balkema: Rotterdam (1994).

[38] S.N. Kruzkov, First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81 (1970) 228-255. | MR 267257 | Zbl 0215.16203