This paper deals with the non-conservative coupling of two one-dimensional barotropic Euler systems at an interface at x = 0. The closure pressure laws differ in the domains x < 0 and x > 0, and a Dirac source term concentrated at x = 0 models singular pressure losses. We propose two numerical methods. The first one relies on ghost state reconstructions at the interface while the second is based on a suitable relaxation framework. Both methods satisfy a well-balanced property for stationary solutions. In addition, the second method preserves mass conservation and exactly restores the prescribed singular pressure drops for both unsteady and steady solutions.
@article{M2AN_2014__48_3_895_0, author = {Ambroso, Annalisa and Chalons, Christophe and Coquel, Fr\'ed\'eric and Gali\'e, Thomas}, title = {Interface model coupling via prescribed local flux balance}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {48}, year = {2014}, pages = {895-918}, doi = {10.1051/m2an/2013125}, zbl = {1292.35166}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2014__48_3_895_0} }
Ambroso, Annalisa; Chalons, Christophe; Coquel, Frédéric; Galié, Thomas. Interface model coupling via prescribed local flux balance. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 48 (2014) pp. 895-918. doi : 10.1051/m2an/2013125. http://gdmltest.u-ga.fr/item/M2AN_2014__48_3_895_0/
[1] Optimal entropy solutions for conservation laws with discontinuous flux-functions. J. Hyperbolic Differ. Equ. 2 (2005) 783-837. | MR 2195983 | Zbl 1093.35045
and ,[2] Godunov-type approximation for a general resonant balance law with large data. J. Differ. Equ. 198 (2004) 233-274. | MR 2038581 | Zbl 1058.35156
, , ,[3] The coupling of homogeneous models for two-phase flows. Int. J. Finite Volumes 4 (2007) 1-39. | MR 2465468
, , , , , and ,[4] Coupling of general Lagrangian systems. Math. Comput. 77 (2008) 909-941. | MR 2373185 | Zbl 1149.35380
, , , , , and ,[5] A method to couple HEM and HRM two-phase flow models. Comput. Fluids 38 (2009) 738-756. | MR 2645675 | Zbl 1242.76326
, and ,[6] Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies. Proc. Roy. Soc. Edinburgh Sect. A 135 (2005) 253-265. | MR 2132749 | Zbl 1071.35079
and ,[7] Existence and uniqueness of entropy solution of scalar conservation laws with a flux function involving discontinuous coefficients. Commun. Partial Differential Equations 31 (2006) 371-395. | MR 2209759 | Zbl 1102.35064
and ,[8] Neptune: a new software platform for advanced nuclear thermal hydraulics. Nuclear Science and Engineering 156 (2007) 281-324.
, , , , , , , , ,[9] Nonlinear stability of Finite volume methods for hyperbolic conservation laws, and well-balanced schemes for sources. Frontiers in Mathematics, Birkhauser (2004). | MR 2128209 | Zbl 1086.65091
,[10] Existence result for the coupling problem of two scalar conservation laws with Riemann initial data. Math. Models Methods Appl. Sci. 20 (2010) 1859-1898. | MR 2735916 | Zbl 1211.35017
, and ,[11] Coupling techniques for nonlinear hyperbolic equations. I. Self-similar diffusion for thin interfaces. Proc. Roy. Soc. Edinburgh Sect. A 141 (2011) 921-956. | MR 2838361 | Zbl 1252.35188
, and ,[12] Analysis of the NUPEC PSBT Tests with FLICA-OVAP. Science and Technology of Nuclear Installations. Article ID 2012 (2012) 436142.
and ,[13] Conservation laws with discontinuous flux: a short introduction. J. Engrg. Math. 60 (2008) 241-247. | MR 2396483 | Zbl 1138.35365
and ,[14] An Engquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections. SIAM J. Numer. Anal. 47 (2009) 1684-1712. | MR 2505870 | Zbl 1201.35022
, and ,[15] The interface coupling of the gas dynamics equations. Quaterly of Applied Mathematics 66 (2008) 659-705. | MR 2465140 | Zbl 1157.76039
, and ,[16] Solution of the Riemann problem for a class of hyperbolic systems of conservation laws by the viscosity method. Arch. Rational Mech. Anal. 52 (1973) 1-9. | MR 340837 | Zbl 0262.35034
,[17] On scalar conservation laws with point source and discontinuous flux function. SIAM J. Math. Anal. 26 (1995) 1425-1451. | MR 1356452 | Zbl 0852.35094
,[18] Scalar conservation laws with discontinuous flux function. I. The viscous profile condition, Commun. Math. Phys. 176 (1996) 23-44. | MR 1372816 | Zbl 0845.35067
,[19] Wastewater Hydraulics, Theory and Practice. Springer (2010).
,[20] Couplage interfacial de modèles pour la thermoohydraulique des réacteurs, Ph.D. thesis, Université Pierre et Marie Curie Paris 6 (2008).
,[21] Solution of the Cauchy problem for a conservation law with a discontinuous flux function. SIAM J. Math. Anal. 23 (1992) 635-648. | MR 1158825 | Zbl 0776.35034
and ,[22] Numerical method for two phase flow with unstable interface. J. Comput. Phys. 39 (1981) 179-200. | MR 608722 | Zbl 0469.76079
, and ,[23] The Riemann problem for a class of resonant hyperbolic systems of balance laws. Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004) 881-902. | Numdam | MR 2097035 | Zbl 1086.35069
and ,[24] The numerical interface coupling of nonlinear hyperbolic systems of conservation laws. II. The case of systems. M2AN Math. Model. Numer. Anal. 39 (2005) 649-692. | Numdam | MR 2165674 | Zbl 1095.65084
, and ,[25] The numerical interface coupling of nonlinear hyperbolic systems of conservation laws. I. The scalar case. Numer. Math. 97 (2004) 81-130. | MR 2045460 | Zbl 1063.65080
and ,[26] A well-balanced scheme using non-conservative products designed for hyperbolic systems of conservation laws with source terms. Math. Models Methods Appl. Sci. 11 (2001) 339-365. | MR 1820677 | Zbl 1018.65108
,[27] Localization effects and measure source terms in numerical schemes for balance laws. Math. Comp. 71 (2001) 553-582. | MR 1885615 | Zbl 0997.65108
,[28] A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33 (1996) 1-16. | MR 1377240 | Zbl 0876.65064
and ,[29] Nonlinear resonance in systems of conservation laws. SIAM J. Appl. Math. 52 (1992) 1260-1278. | MR 1182123 | Zbl 0794.35100
and ,[30] Analysis and approximation of conservation laws with source terms. SIAM J. Numer. Anal. 34 (1997) 1980-2007. | MR 1472206 | Zbl 0888.65100
, , and ,[31] Schemes to couple flows between free and porous medium. Proceedings of AIAA (2005) 2005-4861.
,[32] Coupling two and one-dimensional models through a thin interface. Proceedings of AIAA (2005) 2005-4718.
and ,[33] Boundary conditions for the coupling of two-phase flow models. 18th AIAA CFD conference.
and ,[34] Memento des pertes de charges. Coefficients de pertes de charges singulières et de pertes de charges par frottement. Collection Direction des Etudes et Recherches d'EDF. Eyrolles [in French] (1986).
,[35] The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Comm. Pure Appl. Math. 48 (1995) 235-276. | MR 1322811 | Zbl 0826.65078
and ,[36] Modeling of pressure drop in two-phase flow in singular geometries. 6th International Symposium on Multiphase Flow, Heat Mass Transfert and Energy Conservation. Xi'an, China, 11-15 July 2009, Paper No MN-30, 2009.
, , and ,[37] Discharge Characteristics: IAHR Hydraulic Structures Design Manuals 8. Balkema: Rotterdam (1994).
(Ed.),[38] First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81 (1970) 228-255. | MR 267257 | Zbl 0215.16203
,