In this article, we prove convergence of the weakly penalized adaptive discontinuous Galerkin methods. Unlike other works, we derive the contraction property for various discontinuous Galerkin methods only assuming the stabilizing parameters are large enough to stabilize the method. A central idea in the analysis is to construct an auxiliary solution from the discontinuous Galerkin solution by a simple post processing. Based on the auxiliary solution, we define the adaptive algorithm which guides to the convergence of adaptive discontinuous Galerkin methods.
@article{M2AN_2014__48_3_753_0, author = {Gudi, Thirupathi and Guzm\'an, Johnny}, title = {Convergence analysis of the lowest order weakly penalized adaptive discontinuous Galerkin methods}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {48}, year = {2014}, pages = {753-764}, doi = {10.1051/m2an/2013119}, mrnumber = {3264333}, zbl = {1298.65174}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2014__48_3_753_0} }
Gudi, Thirupathi; Guzmán, Johnny. Convergence analysis of the lowest order weakly penalized adaptive discontinuous Galerkin methods. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 48 (2014) pp. 753-764. doi : 10.1051/m2an/2013119. http://gdmltest.u-ga.fr/item/M2AN_2014__48_3_753_0/
[1] A posteriori error estimation for discontinuous Galerkin finite element approximation. SIAM J. Numer. Anal. 39 (2007) 1777-1798. | MR 2338409 | Zbl 1151.65083
,[2] A posteriori error estimation in finite element analysis. Pure and Applied Mathematics. Wiley-Interscience, John Wiley & Sons, New York (2000). | MR 1885308 | Zbl 1008.65076
and ,[3] An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742-760. | MR 664882 | Zbl 0482.65060
,[4] Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 1749-1779. | MR 1885715 | Zbl 1008.65080
, , and .[5] Uniformly convergent iterative methods for discontinuous Galerkin discretizations. J. Sci. Comput. 40 (2009) 4-36. | MR 2511726 | Zbl 1203.65242
and ,[6] The Finite Element Method and its Reliability. The Claredon Press, Oxford University Press (2001) | MR 1857191
and ,[7] Adaptive Finite Element Methods for Differential Equations. Birkhåuser Verlag, Basel (2003). | MR 1960405 | Zbl 1020.65058
and ,[8] A higher order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows, in Proc. of 2nd European Conference on Turbomachinery, Fluid Dynamics and Thermodynamics, edited by R. Decuypere and G. Dilbelius, Technologisch Instituut, Antewerpen, Belgium (1997) 99-108.
, , , , and ,[9] A convergent nonconforming adaptive finite element method with quasi-optimal complexity. SIAM J. Numer. Anal. 47 (2010) 4639-4659. | MR 2595052 | Zbl 1208.65154
, and ,[10] Private Communication (2013).
and ,[11] Adaptive finite element methods with convergence rates. Numer. Math. 97 (2004) 219-268. | MR 2050077 | Zbl 1063.65120
, , and ,[12] Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method. SIAM J. Numer. Anal. 48 (2010) 734-771. | MR 2670003 | Zbl 1254.65120
and ,[13] The Mathematical Theory of Finite Element Methods, 3rd edn. Springer-Verlag, New York (2008). | MR 2373954 | Zbl 0804.65101
and ,[14] A weakly over-penalized non-symmetric interior penalty method. J. Numer. Anal. Ind. Appl. Math. 2 (2007) 35-48. | MR 2332345 | Zbl 1145.65095
and ,[15] A weakly over-penalized symmetric interior penalty method. Electron. Trans. Numer. Anal. 30 (2008) 107-127. | MR 2480072 | Zbl 1171.65077
, and ,[16] Discontiuous Galerkin Approximations for Elliptic Problems. Numer. Methods Partial Differ. Equ. 16 (2000) 365-378. | MR 1765651 | Zbl 0957.65099
, , , and ,[17] Low order discontinuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47 (2008) 508-533. | MR 2475950 | Zbl 1190.65170
and ,[18] Convergence analysis of an adaptive nonconforming finite element method. Numer. Math. 103 (2006) 251-266. | MR 2222810 | Zbl 1101.65102
and ,[19] Error reduction and convergence for an adaptive mixed finite element method. Math. Comput. 75 (2006) 1033-1042. | MR 2219017 | Zbl 1094.65112
and ,[20] Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46 (2008) 2524-2550. | MR 2421046 | Zbl 1176.65122
, , and ,[21] Convergence and optimality of adaptive mixed finite element methods. Math. Comput. 78 (2009) 35-53. | MR 2448696 | Zbl 1198.65211
, and ,[22] The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35 (1998) 2440-2463. | MR 1655854 | Zbl 0927.65118
and ,[23] Conforming and Nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Anal. Numer. 7 (1973) 33-76. | Numdam | MR 343661 | Zbl 0302.65087
and ,[24] A convergent adaptive algorithm for Poisson's equation. SIAM J. Numer. Anal. 33 (1996) 1106-1124. | MR 1393904 | Zbl 0854.65090
,[25] Interior penalty procedures for elliptic and parabolic Galerkin methods. In vol. 58. Lect. Notes Phys. Springer-Verlag, Berlin (1976). | MR 440955
and ,[26] Convergence analysis ofan adaptive interior penalty discontinuous Galerkin method. SIAM J. Numer. Anal. 47 (2008/09) 534-550. | MR 2475951 | Zbl 1189.65274
, and ,[27] Convergence of adaptive discontinuous Galerkin approximations of second-order elliptic problems. SIAM J. Numer. Anal. 45 (2007) 641-665. | MR 2300291 | Zbl 1140.65083
and ,[28] Convergence of a standard adaptive nonconforming finite element method with optimal complexity. Appl. Numer. Math. 60 (2010) 673-688. | MR 2646469 | Zbl 1202.65147
, and ,[29] Data oscillation and convergence adaptive FEM. SIAM J. Numer. Anal. 38 (2000) 466-488. | MR 1770058 | Zbl 0970.65113
, and ,[30] Convergence of adaptive finite element methods. SIAM Review 44 (2002) 631-658. | MR 1980447 | Zbl 1016.65074
, and ,[31] Optimality of a standard adaptive finite element method. Found. Comput. Math. 7 (2007) 245-269. | MR 2324418 | Zbl 1136.65109
,[32] A Review of A Posteriori Error Estmation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Chichester (1995). | Zbl 0853.65108
,[33] An elliptic collocation-finite-element method with interior penalties. SIAM J. Numer. Anal. 15 (1978) 152-161. | MR 471383 | Zbl 0384.65058
,