We study a Lagrangian numerical scheme for solution of a nonlinear drift diffusion equation on an interval. The discretization is based on the equation's gradient flow structure with respect to the Wasserstein distance. The scheme inherits various properties from the continuous flow, like entropy monotonicity, mass preservation, metric contraction and minimum/ maximum principles. As the main result, we give a proof of convergence in the limit of vanishing mesh size under a CFL-type condition. We also present results from numerical experiments.
@article{M2AN_2014__48_3_697_0, author = {Matthes, Daniel and Osberger, Horst}, title = {Convergence of a variational lagrangian scheme for a nonlinear drift diffusion equation}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {48}, year = {2014}, pages = {697-726}, doi = {10.1051/m2an/2013126}, mrnumber = {3177862}, zbl = {1293.65119}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2014__48_3_697_0} }
Matthes, Daniel; Osberger, Horst. Convergence of a variational lagrangian scheme for a nonlinear drift diffusion equation. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 48 (2014) pp. 697-726. doi : 10.1051/m2an/2013126. http://gdmltest.u-ga.fr/item/M2AN_2014__48_3_697_0/
[1] Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics. ETH Zürich, Birkhäuser Verlag, Basel (2005). | MR 2129498 | Zbl 1145.35001
, and ,[2] Stability of flows associated to gradient vector fields and convergence of iterated transport maps. Manuscripta Math. 121 (2006) 1-50. | MR 2258529 | Zbl 1099.49027
, and ,[3] A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84 (2000) 375-393. | MR 1738163 | Zbl 0968.76069
and ,[4] Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model. SIAM J. Numer. Anal. 46 (2008) 691-721. | MR 2383208 | Zbl 1205.65332
, and ,[5] Self-similar numerical solutions of the porous-medium equation using moving mesh methods. R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 357 (1999) 1047-1077. | MR 1694702 | Zbl 0931.76079
, , and ,[6] A mixed finite element method for nonlinear diffusion equations. Kinet. Relat. Models 3 (2010) 59-83. | MR 2580954 | Zbl 1194.35026
, and ,[7] Numerical simulation of diffusive and aggregation phenomena in nonlinear continuity equations by evolving diffeomorphisms. SIAM J. Sci. Comput. 31 (2009/2010) 4305-4329. | MR 2566595 | Zbl 1205.65265
and ,[8] A Wasserstein approach to the numerical solution of the one-dimensional Cahn-Hilliard equation. Kinet. Relat. Models 3 (2010) 123-142. | MR 2580956 | Zbl 1191.80042
and ,[9] A gradient flow scheme for nonlinear fourth order equations. Discrete Contin. Dyn. Syst. Ser. B 14 (2010) 935-959. | MR 2670179 | Zbl 1206.65221
, and ,[10] Diffeomorphisms and nonlinear heat flows. SIAM J. Math. Anal. 37 (2005) 737-751. | MR 2191774 | Zbl 1096.35061
, and ,[11] Minimal surfaces and functions of bounded variation, vol. 80, Monographs in Mathematics. Birkhäuser Verlag, Basel (1984). | MR 775682 | Zbl 0545.49018
,[12] Identification of asymptotic decay to self-similarity for one-dimensional filtration equations. SIAM J. Numer. Anal. 43 (2006) 2590-2606 (electronic). | MR 2206449 | Zbl 1145.76048
and ,[13] The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29 (1998) 1-17. | Zbl 0915.35120
, and ,[14] Approximation of parabolic equations using the Wasserstein metric. ESAIM: M2AN 33 (1999) 837-852. | Numdam | Zbl 0936.65121
and ,[15] Gradientenfluß-basierte diskretisierung parabolischer gleichungen, diplomarbeit, Universität Bonn (2002).
,[16] A numerical procedure for the porous media equation. Hyperbolic partial differential equations, II. Comput. Math. Appl. 11 (1985) 315-319. | Zbl 0608.76083
and ,[17] A convexity principle for interacting gases. Adv. Math. 128 (1997) 153-179. | Zbl 0901.49012
,[18] The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differential Equations 26 (2001) 101-174. | Zbl 0984.35089
,[19] Discretizing the porous medium equation based on its gradient flow structure - a consistency paradox, Technical report 150, Sonderforschungsbereich 611, May 2004.Available online at http://sfb611.iam.uni-bonn.de/uploads/150-komplett.pdf.
,[20] Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. 2 (2003) 395-431. | Numdam | MR 2005609 | Zbl 1150.46014
and ,[21] Deterministic diffusion of particles. Commun. Pure Appl. Math. 43 (1990) 697-733. | MR 1059326 | Zbl 0713.65089
,[22] Gamma-convergence of gradient flows on Hilbert and metric spaces and applications, Discrete Contin. Dyn. Syst. 31 (2011) 1427-1451. | MR 2836361 | Zbl 1239.35015
,[23] Topics in optimal transportation, in vol. 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2003). | MR 1964483 | Zbl 1106.90001
,[24] Variational particle schemes for the porous medium equation and for the system of isentropic Euler equations. ESAIM: M2AN 44 (2010) 133-166. | Numdam | MR 2647756 | Zbl pre05693768
and ,