The central objective of this paper is to develop reduced basis methods for parameter dependent transport dominated problems that are rigorously proven to exhibit rate-optimal performance when compared with the Kolmogorov n-widths of the solution sets. The central ingredient is the construction of computationally feasible “tight” surrogates which in turn are based on deriving a suitable well-conditioned variational formulation for the parameter dependent problem. The theoretical results are illustrated by numerical experiments for convection-diffusion and pure transport equations. In particular, the latter example sheds some light on the smoothness of the dependence of the solutions on the parameters.
@article{M2AN_2014__48_3_623_0, author = {Dahmen, Wolfgang and Plesken, Christian and Welper, Gerrit}, title = {Double greedy algorithms: Reduced basis methods for transport dominated problems}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {48}, year = {2014}, pages = {623-663}, doi = {10.1051/m2an/2013103}, mrnumber = {3177860}, zbl = {1291.65339}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2014__48_3_623_0} }
Dahmen, Wolfgang; Plesken, Christian; Welper, Gerrit. Double greedy algorithms: Reduced basis methods for transport dominated problems. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 48 (2014) pp. 623-663. doi : 10.1051/m2an/2013103. http://gdmltest.u-ga.fr/item/M2AN_2014__48_3_623_0/
[1] Convergence Rates for Greedy Algorithms in Reduced Basis Methods. SIAM J. Math. Anal. 43 (2011) 1457-1472. | MR 2821591 | Zbl 1229.65193
, , , , and ,[2] Mixed and Hybrid Finite Element Methods, in vol. 15 of Springer Ser. Comput. Math. Springer-Verlag (1991). | MR 1115205 | Zbl 0788.73002
and ,[3] A Priori convergence of the greedy algorithm for the parameterized reduced basis. ESAIM: M2AN 46 (2012) 595-603. | Numdam | MR 2877366 | Zbl 1272.65084
, , , and ,[4] Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46 (2008) 2524-2550. | MR 2421046 | Zbl 1176.65122
, , and ,[5] Adaptivity and Variational Stabilization for Convection-Diffusion Equations. ESAIM: M2AN 46 (2012) 1247-1273. | Numdam | MR 2916380 | Zbl 1270.65065
, and ,[6] Parameter dependent transport equations, in Workshop J.L.L.-SMP: Reduced Basis Methods in High Dimensions. Available at http://www.ljll.math.upmc.fr/fr/archives/actualites/2011/workshop˙ljll˙smp˙rbihd.html
,[7] Adaptive Petrov−Galerkin methods for first order transport equations. SIAM J. Numer. Anal. 50 (2012) 2420-2445. | MR 3022225 | Zbl 1260.65091
, , and ,[8] A class of discontinuous Petrov−Galerkin Methods I: The transport equation. Comput. Methods Appl. Mech. Engrg. 199 (2010) 1558-1572. | MR 2630162 | Zbl 1231.76142
and ,[9] A class of discontinuous Petrov−Galerkin methods. Part II: Optimal test functions. Numer. Methods for Partial Differ. Equ. 27 (2011) 70-105. | MR 2743600 | Zbl 1208.65164
and ,[10] Reduced basis error bound computation of parameter-dependent Navier-Stokes equations by the natural norm approach. SIAM J. Numer. Anal. 46 (2008) 2039-2067. | MR 2399407 | Zbl 1177.35148
,[11] Greedy algorithms for reduced bases in Banach spaces, Constructive Approximation 37 (2013) 455-466. | MR 3054611 | Zbl 1276.41021
, and ,[12] Theory and practice of finite elements. Springer (2004). | MR 2050138 | Zbl 1059.65103
and ,[13] Certified reduced basis methods for parametrized saddle point problems, preprint (2012). To appear in SIAM J. Sci. Comput. | MR 3023727 | Zbl 1255.76024
and ,[14] Reduced basis a posteriori error bounds for the Stokes equations in parameterized domains: A penalty approach. M3AS: Math. Models Methods Appl. Sci. 21 (2011) 2103-2134. | MR 2851708 | Zbl pre06045578
and ,[15] Certified Reduced Basis Methods for Nonaffine Linear Time-Varying and Nonlinear Parabolic Partial Differential Equations. M3AS: Math. Models Methods Appl. Sci. 22 (2012) 40. | MR 2890453 | Zbl 1241.35116
,[16] A Posteriori Error Bounds for Reduced-Basis Approximations of Parametrized Parabolic Partial Differential Equations. ESAIM: M2AN 39 (2005) 157-181. | Numdam | MR 2136204 | Zbl 1079.65096
and ,[17] Convergence rates for the POD-greedy method. ESAIM: M2AN 47 (2013) 859-873. | Numdam | MR 3056412 | Zbl 1277.65074
,[18] Variational Multiscale Analysis: the Fine-scale Green's Function, Projection, Optimization, Localization, and Stabilized Methods. SIAM J. Numer. Anal. 45 (2007) 539-557. | MR 2300286 | Zbl 1152.65111
and ,[19] Numerical methods in multidimensional radiative transfer, Springer (2009). | MR 2530844 | Zbl 1155.65004
, , and ,[20] Constructive approximation: Advanced problems, vol. 304. Springer Grundlehren, Berlin (1996). | MR 1393437 | Zbl 0910.41001
, and ,[21] A priori convergence theory for reduced-basis approximations of single-parametric elliptic partial differential equations. J. Sci. Comput. 17 (2002) 437-446. | MR 1910581 | Zbl 1014.65115
, and ,[22] First-order system ℒℒ∗ (FOSLL)∗ for general scalar elliptic problems in the plane. SIAM J. Numer. Anal. 43 (2005) 2098-2120. | MR 2192333 | Zbl 1103.65117
, , and ,[23] Reduced basis approximation for the time-dependent viscous Burgers' equation. Calcolo 46 (2009) 157-185. | MR 2533748 | Zbl 1178.65109
, and ,[24] An improved error bound for reduced basis approximation of linear parabolic problems, submitted to Mathematics of Computation (in press 2013). | Zbl pre06300438
and ,[25] Reduced Basis Approximation and a Posteriori Error Estimation for Parametrized Partial Differential Equations, Version 1.0, Copyright MIT 2006-2007, to appear in (tentative rubric) MIT Pappalardo Graduate Monographs in Mechanical Engineering. | Zbl pre05344486
and ,[26] Robust Numerical Methods for Singularly Perturbed Differential Equations, in vol. 24 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 2nd Edition (2008). | MR 2454024 | Zbl 1155.65087
, and ,[27] G. Rozza and D.B.P. Huynh and A. Manzoni, Reduced basis approximation and a posteriori error estiamtion for Stokes flows in parametrized geometries: roles of the inf-sup stability constants, Numer. Math. DOI: 10.1007/s00211-013-0534-8. | MR 3090657 | Zbl pre06210474
[28] Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Eng. 15 (2008) 229-275. | MR 2430350 | Zbl pre05344486
, and ,[29] On the stability of reduced basis techniques for Stokes equations in parametrized domains. Comput. Methods Appl. Mechanics Engrg. 196 (2007) 1244-1260. | MR 2281777 | Zbl 1173.76352
and ,[30] A uniform analysis of non-symmetric and coercive linear operators. SIAM J. Math. Anal. 36 (2005) 2033-2048. | MR 2178232 | Zbl 1114.35060
,[31] On Forward and Inverse Models in Optical Tomography, Ph.D. Thesis. RWTH Aachen (2011).
,[32] Natural norm a posteriori error estimators for reduced basis approximations. J. Comput. Phys. 217 (2006) 37-62. | MR 2250524 | Zbl 1100.65094
, , , , and ,[33] Robust a posteriori error estimates for stationary convection-diffusion equations. SIAM J. Numer. Anal. 43 (2005) 1766-1782. | MR 2182149 | Zbl 1099.65100
,[34] Infinite dimensional stabilization of convection-dominated problems, Ph.D. Thesis. RWTH Aachen (2012).
,[35] A class of discontinuous Petrov−Galerkin methods. Part IV: Wave propagation. J. Comput. Phys. 230 (2011) 2406-2432. | MR 2772923 | Zbl pre05909482
, , , , and ,