In this paper we develop and study numerically a model to describe some aspects of sound propagation in the human lung, considered as a deformable and viscoelastic porous medium (the parenchyma) with millions of alveoli filled with air. Transmission of sound through the lung above 1 kHz is known to be highly frequency-dependent. We pursue the key idea that the viscoelastic parenchyma structure is highly heterogeneous on the small scale ε and use two-scale homogenization techniques to derive effective acoustic equations for asymptotically small ε. This process turns out to introduce new memory effects. The effective material parameters are determined from the solution of frequency-dependent micro-structure cell problems. We propose a numerical approach to investigate the sound propagation in the homogenized parenchyma using a Discontinuous Galerkin formulation. Numerical examples are presented.
@article{M2AN_2014__48_1_27_0, author = {Cazeaux, Paul and Hesthaven, Jan S.}, title = {Multiscale modelling of sound propagation through the lung parenchyma}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {48}, year = {2014}, pages = {27-52}, doi = {10.1051/m2an/2013093}, mrnumber = {3177836}, zbl = {1285.93014}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2014__48_1_27_0} }
Cazeaux, Paul; Hesthaven, Jan S. Multiscale modelling of sound propagation through the lung parenchyma. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 48 (2014) pp. 27-52. doi : 10.1051/m2an/2013093. http://gdmltest.u-ga.fr/item/M2AN_2014__48_1_27_0/
[1] Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482-1518. | MR 1185639 | Zbl 0770.35005
,[2] Homogenization of elastic media with gaseous inclusions. Multiscale Model. Simul. 7 (2008) 432-465. | MR 2399553 | Zbl 1158.93003
, , and ,[3] Determination of discrete relaxation and retardation time spectra from dynamic mechanical data. Rheologica Acta 28 (1989) 511-519.
and ,[4] Mechanical modeling of the skin. Asymptotic Analysis 74 (2011) 167-198. | MR 2868051 | Zbl 1281.35087
and ,[5] Reduced-basis approach for homogenization beyond the periodic setting. Multiscale Model. Simul. 7 (2008) 466-494. | MR 2438574 | Zbl 1156.74358
,[6] Biot's poroelasticity equations by homogenization, in Macroscopic Properties of Disordered Media, vol. 154 of Lecture Notes in Physics. Springer (1982) 51-57. | MR 674958 | Zbl 0487.73001
and ,[7] Longitudinal elastic wave propagation in pulmonary parenchyma. J. Appl. Phys. 62 (1987) 1349-1355.
, and ,[8] A genetic algorithm used to fit Debye functions to the dielectric properties of tissues. 2010 IEEE Congress on Evolutionary Computation (CEC) (2010) 1-8.
and ,[9] Attenuation and speed of ultrasound in lung: Dependence upon frequency and inflation. J. Acoust. Soc. Am. 80 (1986) 1248-1250.
,[10] Mathematical problems in linear viscoelasticity, vol. 12 of SIAM Studies in Applied Mathematics. SIAM, Philadelphia, PA (1992). | MR 1153021 | Zbl 0753.73003
and ,[11] Deriving the effective ultrasound equations for soft tissue interrogation. Comput. Math. Appl. 49 (2005) 1069-1080. | MR 2141251 | Zbl 1236.74239
, and ,[12] Homogenizing the acoustic properties of the seabed. I. Nonlinear Anal. 40 (2000) 185-212. | MR 1768409 | Zbl 0958.35108
and ,[13] A one-dimensional model for the propagation of transient pressure waves through the lung. J. Biomech. 35 (2002) 1081-1089.
, and ,[14] Viscous dissipation and completely monotonic relaxation moduli. Rheologica Acta 44 (2005) 614-621.
,[15] FreeFem++ manual (2012).
,[16] Nodal discontinuous Galerkin methods, vol. 54 of Texts in Applied Mathematics. Springer, New York (2008). | MR 2372235 | Zbl 1134.65068
and ,[17] Application of implicit-explicit high order Runge-Kutta methods to discontinuous-Galerkin schemes. J. Comput. Phys. 225 (2007) 1753-1781. | MR 2349202 | Zbl 1123.65097
, , and ,[18] Debye function expansions of complex permittivity using a hybrid particle swarm-least squares optimization approach. Antennas Propagation IEEE Trans. 55 (2007) 1999-2005. | MR 2338772
, and ,[19] Additive Runge-Kutta schemes for convection-diffusion-reaction equations. Appl. Numer. Math. 44 (2003) 139-181. | MR 1951292 | Zbl 1013.65103
and ,[20] Hedge: Hybrid and Easy Discontinuous Galerkin Environment. http://www.cims.]nyu.edu/˜kloeckner/ (2010).
,[21] Speed of low-frequency sound through lungs of normal men. J. Appl. Phys. (1983) 1862-1867.
,[22] Numerical methods for conservation laws. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel (1990). | MR 1077828 | Zbl 0847.65053
,[23] Problèmes aux limites non homogènes et applications, vol. 1 of Travaux et Recherches Mathématiques. Dunod, Paris (1968). | Zbl 0165.10801
and ,[24] M. Lourakis, levmar: Levenberg-Marquardt nonlinear least squares algorithms in C/C++. http://www.ics.forth.gr/˜lourakis/levmar/ (2004).
[25] Reduced basis numerical homogenization for scalar elliptic equations with random coefficients: application to blood micro-circulation. Submitted to SIAM J. Appl Math. (2012).
, and ,[26] Modélisation mathématique et simulation de systèmes microvasculaires. Ph.D. thesis, Université Pierre et Marie Curie (2011).
,[27] A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608-623. | MR 990867 | Zbl 0688.35007
,[28] The mechanics of lung tissue under high-frequency ventilation. SIAM J. Appl. Math. 61 (2001) 1731-1761. | MR 1824522 | Zbl 0994.76105
and ,[29] Respiratory sounds. advances beyond the stethoscope. Am. J. Respir. Crit. Care Med. 156 (1997) 974.
, and ,[30] Sound speed in pulmonary parenchyma. J. Appl. Physiol. 54 (1983) 304-308.
,[31] What do we know about mechanical strain in lung alveoli? Am. J. Physiol. Lung Cell Mol. Physiol. 301 (2011) 625-635.
and ,[32] Low-frequency ultrasound permeates the human thorax and lung: a novel approach to non-invasive monitoring. Ultraschall Med. 31 (2010) 53-62.
, , , and ,[33] Vibration of mixtures of solids and fluids, in Non-Homogeneous Media and Vibration Theory, vol. 127 of Lecture Notes in Physics. Springer (1980) 158-190.
,[34] A simple collocation method for fitting viscoelastic models to experimental data. GALCIT SM 63 (1961) 23.
,[35] Multiscale modeling of the acoustic properties of lung parenchyma. ESAIM: Proc. 23 (2008) 78-97. | MR 2509207 | Zbl 1156.92307
, , and .[36] Time integration in linear viscoelasticity - a comparative study. Mech. Time-Dependent Mater. 14 (2010) 307-328
and ,[37] Biomechanics of the lung parenchyma: critical roles of collagen and mechanical forces. J. Appl. Physiol. 98 (2005) 1892-1899.
, , , and ,[38] Linear problems. In Homogenization Techniques for Composite Media, vol. 272 of Lecture Notes in Physics. Edited by Enrique Sanchez-Palencia and André Zaoui. Springer (1987) 209-230. | MR 902007 | Zbl 0619.00027
,[39] The general theory of homogenization. A personalized introduction, vol. 7 of Lecture Notes of the Unione Matematica Italiana. Springer (2009). | MR 2582099 | Zbl 1188.35004
,[40] Asymptotic homogenization of viscoelastic composites with periodic microstructures. Int. J. Solids Struct. 35 (1998) 2039-2055. | MR 1616148 | Zbl 0933.74054
, and ,