Automatic simplification of Darcy's equations with pressure dependent permeability
Ahusborde, Etienne ; Azaïez, Mejdi ; Ben Belgacem, Faker ; Bernardi, Christine
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 47 (2013), p. 1797-1820 / Harvested from Numdam

We consider the flow of a viscous incompressible fluid in a rigid homogeneous porous medium provided with mixed boundary conditions. Since the boundary pressure can present high variations, the permeability of the medium also depends on the pressure, so that the model is nonlinear. A posteriori estimates allow us to omit this dependence where the pressure does not vary too much. We perform the numerical analysis of a spectral element discretization of the simplified model. Finally we propose a strategy which leads to an automatic identification of the part of the domain where the simplified model can be used without increasing significantly the error.

Publié le : 2013-01-01
DOI : https://doi.org/10.1051/m2an/2013089
Classification:  76S05,  65N35
@article{M2AN_2013__47_6_1797_0,
     author = {Ahusborde, Etienne and Aza\"\i ez, Mejdi and Ben Belgacem, Faker and Bernardi, Christine},
     title = {Automatic simplification of Darcy's equations with pressure dependent permeability},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {47},
     year = {2013},
     pages = {1797-1820},
     doi = {10.1051/m2an/2013089},
     mrnumber = {3123377},
     zbl = {1311.76128},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2013__47_6_1797_0}
}
Ahusborde, Etienne; Azaïez, Mejdi; Ben Belgacem, Faker; Bernardi, Christine. Automatic simplification of Darcy's equations with pressure dependent permeability. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 47 (2013) pp. 1797-1820. doi : 10.1051/m2an/2013089. http://gdmltest.u-ga.fr/item/M2AN_2013__47_6_1797_0/

[1] Y. Achdou, C. Bernardi and F. Coquel, A priori and a posteriori analysis of finite volume discretizations of Darcy's equations. Numer. Math. 96 (2003) 17-42. | MR 2018789 | Zbl 1050.76035

[2] M. Azaïez, F. Ben Belgacem and C. Bernardi, The mortar spectral element method in domains of operators, Part I: The divergence operator and Darcy's equations. IMA J. Numer. Anal. 26 (2006) 131-154. | MR 2193973 | Zbl 1094.65116

[3] M. Azaïez, F. Ben Belgacem, C. Bernardi and N. Chorfi, Spectral discretization of Darcy's equations with pressure dependent porosity. Appl. Math. Comput. 217 (2010) 1838-1856. | MR 2727929 | Zbl pre05817268

[4] M. Azaïez, F. Ben Belgacem, M. Grundmann and H. Khallouf, Staggered grids hybrid-dual spectral element method for second-order elliptic problems, Application to high-order time splitting methods for Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 166 (1998) 183-199. | MR 1659191 | Zbl 0969.76066

[5] C. Bernardi, Indicateurs d'erreur en h − N version des éléments spectraux. Modél. Math. et Anal. Numér. 30 (1996) 1-38. | Numdam | MR 1378610 | Zbl 0843.65077

[6] C. Bernardi, A. Blouza, N. Chorfi and N. Kharrat, A penalty algorithm for the spectral element discretization of the Stokes problem. Math. Model. Numer. Anal. 45 (2011) 201-216. | Numdam | MR 2804636 | Zbl 1267.76023

[7] C. Bernardi, T. Chacón Rebollo, F. Hecht and R. Lewandowski, Automatic insertion of a turbulence model in the finite element discretization of the Navier-Stokes equations. Math. Models Methods Appl. Sci. 19 (2009) 1139-1183. | MR 2553180 | Zbl 1169.76031

[8] C. Bernardi, F. Coquel and P.-A. Raviart, Automatic coupling and finite element discretization of the Navier-Stokes and heat equations, Internal Report R10001, Labotatoire Jacques-Louis Lions, Paris (2010).

[9] C. Bernardi, M. Dauge and Y. Maday, Polynomials in Sobolev Spaces and Application to the Mortar Spectral Element Method, in preparation.

[10] C. Bernardi and Y. Maday, Spectral Methods, in the Handbook of Numerical Analysis V, edited by P.G. Ciarlet and J.-L. Lions. North-Holland (1997) 209-485. | MR 1470226 | Zbl 0689.65001

[11] C. Bernardi, Y. Maday and F. Rapetti, Discrétisations variationnelles de problèmes aux limites elliptiques, Collection Mathématiques et Applications vol. 45. Springer-Verlag (2004). | MR 2068204 | Zbl 1063.65119

[12] M. Braack and A. Ern, A posteriori control of modeling errors and discretization errors. Multiscale Model. Simul. 1 (2003) 221-238. | MR 1990196 | Zbl 1050.65100

[13] H. Brezis and P. Mironescu, Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces, J. Evol. Equ. 1 (2001), 387-404. | MR 1877265 | Zbl 1023.46031

[14] F. Brezzi, J. Rappaz and P.-A. Raviart, Finite dimensional approximation of nonlinear problems, Part I: Branches of nonsingular solutions. Numer. Math. 36 (1980) 1-25. | MR 595803 | Zbl 0488.65021

[15] T. Chacón Rebollo, S. Del Pino and D. Yakoubi, An iterative procedure to solve a coupled two-fluids turbulence model. Math. Model. Numer. Anal. 44 (2010) 693-713. | Numdam | MR 2683579 | Zbl 1234.76037

[16] A.L. Chaillou and M. Suri, Computable error estimators for the approximation of nonlinear problems by linearized models. Comput. Methods Appl. Mech. Engrg. 196 (2006) 210-224. | MR 2270132 | Zbl 1120.74809

[17] M. Daadaa, Discrétisation spectrale et par éléments spectraux des équations de Darcy, Ph.D. Thesis, Université Pierre et Marie Curie, Paris (2009).

[18] M. Dauge, Neumann and mixed problems on curvilinear polyhedra. Integr. Equ. Oper. Th. 15 (1992) 227-261. | MR 1147281 | Zbl 0767.46026

[19] L. El Alaoui, A. Ern and M. Vohralík, Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems. Comput. Methods Appl. Mech. Engrg. 200 (2011) 2782-2795. | MR 2811915 | Zbl 1230.65118

[20] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag (1986). | MR 851383 | Zbl 0585.65077

[21] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. I. Dunod, Paris (1968). | Zbl 0197.06701

[22] N.G. Meyers, An Lp-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Sc. Norm. Sup. Pisa 17 (1963) 189-206. | Numdam | MR 159110 | Zbl 0127.31904

[23] J. Pousin and J. Rappaz, Consistency, stability, a priori and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems. Numer. Math. 69 (1994) 213-231. | MR 1310318 | Zbl 0822.65034

[24] K.R. Rajagopal, On a hierarchy of approximate models for flows of incompressible fluids through porous solid. Math. Models Methods Appl. Sci. 17 (2007) 215-252. | MR 2292356 | Zbl 1123.76066

[25] G. Talenti, Best constant in Sobolev inequality. Ann. Math. Pura ed Appl. Serie IV 110 (1976) 353-372. | MR 463908 | Zbl 0353.46018

[26] R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley ans Teubner (1996). | Zbl 0853.65108