We consider the flow of a viscous incompressible fluid in a rigid homogeneous porous medium provided with mixed boundary conditions. Since the boundary pressure can present high variations, the permeability of the medium also depends on the pressure, so that the model is nonlinear. A posteriori estimates allow us to omit this dependence where the pressure does not vary too much. We perform the numerical analysis of a spectral element discretization of the simplified model. Finally we propose a strategy which leads to an automatic identification of the part of the domain where the simplified model can be used without increasing significantly the error.
@article{M2AN_2013__47_6_1797_0, author = {Ahusborde, Etienne and Aza\"\i ez, Mejdi and Ben Belgacem, Faker and Bernardi, Christine}, title = {Automatic simplification of Darcy's equations with pressure dependent permeability}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {47}, year = {2013}, pages = {1797-1820}, doi = {10.1051/m2an/2013089}, mrnumber = {3123377}, zbl = {1311.76128}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2013__47_6_1797_0} }
Ahusborde, Etienne; Azaïez, Mejdi; Ben Belgacem, Faker; Bernardi, Christine. Automatic simplification of Darcy's equations with pressure dependent permeability. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 47 (2013) pp. 1797-1820. doi : 10.1051/m2an/2013089. http://gdmltest.u-ga.fr/item/M2AN_2013__47_6_1797_0/
[1] A priori and a posteriori analysis of finite volume discretizations of Darcy's equations. Numer. Math. 96 (2003) 17-42. | MR 2018789 | Zbl 1050.76035
, and ,[2] The mortar spectral element method in domains of operators, Part I: The divergence operator and Darcy's equations. IMA J. Numer. Anal. 26 (2006) 131-154. | MR 2193973 | Zbl 1094.65116
, and ,[3] Spectral discretization of Darcy's equations with pressure dependent porosity. Appl. Math. Comput. 217 (2010) 1838-1856. | MR 2727929 | Zbl pre05817268
, , and ,[4] Staggered grids hybrid-dual spectral element method for second-order elliptic problems, Application to high-order time splitting methods for Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 166 (1998) 183-199. | MR 1659191 | Zbl 0969.76066
, , and ,[5] Indicateurs d'erreur en h − N version des éléments spectraux. Modél. Math. et Anal. Numér. 30 (1996) 1-38. | Numdam | MR 1378610 | Zbl 0843.65077
,[6] A penalty algorithm for the spectral element discretization of the Stokes problem. Math. Model. Numer. Anal. 45 (2011) 201-216. | Numdam | MR 2804636 | Zbl 1267.76023
, , and ,[7] Automatic insertion of a turbulence model in the finite element discretization of the Navier-Stokes equations. Math. Models Methods Appl. Sci. 19 (2009) 1139-1183. | MR 2553180 | Zbl 1169.76031
, , and ,[8] Automatic coupling and finite element discretization of the Navier-Stokes and heat equations, Internal Report R10001, Labotatoire Jacques-Louis Lions, Paris (2010).
, and ,[9] Polynomials in Sobolev Spaces and Application to the Mortar Spectral Element Method, in preparation.
, and ,[10] Spectral Methods, in the Handbook of Numerical Analysis V, edited by P.G. Ciarlet and J.-L. Lions. North-Holland (1997) 209-485. | MR 1470226 | Zbl 0689.65001
and ,[11] Discrétisations variationnelles de problèmes aux limites elliptiques, Collection Mathématiques et Applications vol. 45. Springer-Verlag (2004). | MR 2068204 | Zbl 1063.65119
, and ,[12] A posteriori control of modeling errors and discretization errors. Multiscale Model. Simul. 1 (2003) 221-238. | MR 1990196 | Zbl 1050.65100
and ,[13] Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces, J. Evol. Equ. 1 (2001), 387-404. | MR 1877265 | Zbl 1023.46031
and ,[14] Finite dimensional approximation of nonlinear problems, Part I: Branches of nonsingular solutions. Numer. Math. 36 (1980) 1-25. | MR 595803 | Zbl 0488.65021
, and ,[15] An iterative procedure to solve a coupled two-fluids turbulence model. Math. Model. Numer. Anal. 44 (2010) 693-713. | Numdam | MR 2683579 | Zbl 1234.76037
, and ,[16] Computable error estimators for the approximation of nonlinear problems by linearized models. Comput. Methods Appl. Mech. Engrg. 196 (2006) 210-224. | MR 2270132 | Zbl 1120.74809
and ,[17] Discrétisation spectrale et par éléments spectraux des équations de Darcy, Ph.D. Thesis, Université Pierre et Marie Curie, Paris (2009).
,[18] Neumann and mixed problems on curvilinear polyhedra. Integr. Equ. Oper. Th. 15 (1992) 227-261. | MR 1147281 | Zbl 0767.46026
,[19] Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems. Comput. Methods Appl. Mech. Engrg. 200 (2011) 2782-2795. | MR 2811915 | Zbl 1230.65118
, and ,[20] Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag (1986). | MR 851383 | Zbl 0585.65077
and ,[21] Problèmes aux limites non homogènes et applications, Vol. I. Dunod, Paris (1968). | Zbl 0197.06701
and ,[22] An Lp-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Sc. Norm. Sup. Pisa 17 (1963) 189-206. | Numdam | MR 159110 | Zbl 0127.31904
,[23] Consistency, stability, a priori and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems. Numer. Math. 69 (1994) 213-231. | MR 1310318 | Zbl 0822.65034
and ,[24] On a hierarchy of approximate models for flows of incompressible fluids through porous solid. Math. Models Methods Appl. Sci. 17 (2007) 215-252. | MR 2292356 | Zbl 1123.76066
,[25] Best constant in Sobolev inequality. Ann. Math. Pura ed Appl. Serie IV 110 (1976) 353-372. | MR 463908 | Zbl 0353.46018
,[26] A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley ans Teubner (1996). | Zbl 0853.65108
,