A new class of nonparametric nonconforming quadrilateral finite elements is introduced which has the midpoint continuity and the mean value continuity at the interfaces of elements simultaneously as the rectangular DSSY element [J. Douglas, Jr., J.E. Santos, D. Sheen and X. Ye, ESAIM: M2AN 33 (1999) 747-770.] The parametric DSSY element for general quadrilaterals requires five degrees of freedom to have an optimal order of convergence [Z. Cai, J. Douglas, Jr., J.E. Santos, D. Sheen and X. Ye, Calcolo 37 (2000) 253-254.], while the new nonparametric DSSY elements require only four degrees of freedom. The design of new elements is based on the decomposition of a bilinear transform into a simple bilinear map followed by a suitable affine map. Numerical results are presented to compare the new elements with the parametric DSSY element.
@article{M2AN_2013__47_6_1783_0, author = {Jeon, Youngmok and NAM, Hyun and Sheen, Dongwoo and Shim, Kwangshin}, title = {A class of nonparametric DSSY nonconforming quadrilateral elements}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {47}, year = {2013}, pages = {1783-1796}, doi = {10.1051/m2an/2013088}, mrnumber = {3123376}, zbl = {1287.65109}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2013__47_6_1783_0} }
Jeon, Youngmok; NAM, Hyun; Sheen, Dongwoo; Shim, Kwangshin. A class of nonparametric DSSY nonconforming quadrilateral elements. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 47 (2013) pp. 1783-1796. doi : 10.1051/m2an/2013088. http://gdmltest.u-ga.fr/item/M2AN_2013__47_6_1783_0/
[1] Approximation by quadrilateral finite elements. Math. Comput. 71 (2002) 909-922. | MR 1898739 | Zbl 0993.65125
, and ,[2] Linear finite element methods for planar elasticity. Math. Comput. 59 (1992) 321-338. | Zbl 0766.73060
and ,[3] Nonconforming quadrilateral finite elements: A correction. Calcolo 37 (2000) 253-254. | MR 1812789 | Zbl 1012.65124
, , , and ,[4] A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier-Stokes equations. Calcolo 36 (1999) 215-232. | MR 1740354 | Zbl 0947.76047
, and ,[5] Projection finite element methods for semiconductor device equations. Computers Math. Appl. 25 (1993) 81-88. | MR 1205422 | Zbl 0772.65081
,[6] Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO - Math. Model. Numer. Anal. 7 (1973) 33-75. | Numdam | MR 343661 | Zbl 0302.65087
and ,[7] Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems. ESAIM: M2AN 33 (1999) 747-770. | Numdam | MR 1726483 | Zbl 0941.65115
, , and ,[8] Nonconforming elements in the mixed finite element method. J. Comput. Math. 2 (1984) 223-233. | MR 815417 | Zbl 0573.65083
,[9] Constrained quadrilateral nonconforming rotated Q1-element. J. Comput. Math. 23 (2005) 561-586. | MR 2190317 | Zbl 1086.65111
and ,[10] A nonparametric DSSY nonconforming quadrilateral element with maximal inf-sup constant (2013). In preparation.
, , and ,[11] New robust nonconforming finite elements of higher order. Appl. Numer. Math. 62 (2012) 166-184. | MR 2878019 | Zbl 1238.65112
, , , and ,[12] A linear nonconforming finite element method for nearly incompressible elasticity and Stokes flow. Comput. Methods Appl. Mech. Engrg. 124 (1995) 195-212. | MR 1343077 | Zbl 1067.74578
and ,[13] A locking-free nonconforming finite element method for planar elasticity. Adv. Comput. Math. 19 (2003) 277-291. | MR 1973469 | Zbl 1064.74165
, and ,[14] Nonconforming rotated Q1 element for Reissner-Mindlin plate. Math. Models Methods Appl. Sci. 11 (2001) 1311-1342. | MR 1859825 | Zbl 1037.74048
and ,[15] Two nonconforming quadrilateral elements for the Reissner-Mindlin plate. Math. Models Methods Appl. Sci. 15 (2005) 1503-1517. | MR 2168943 | Zbl 1096.74050
and ,[16] A cheapest nonconforming rectangular finite element for the Stokes problem. Comput. Methods Appl. Mech. Engrg. 257 (2013) 77-86. | MR 3043478 | Zbl 1286.76044
, , and ,[17] P1-nonconforming quadrilateral finite element methods for second-order elliptic problems. SIAM J. Numer. Anal. 41 (2003) 624-640. | MR 2004191 | Zbl 1048.65114
and ,[18] A quadrilateral Morley element for biharmonic equations. Numer. Math. 124 (2013) 395-413. | MR 3054357 | Zbl pre06176431
and ,[19] Simple nonconforming quadrilateral Stokes element. Numer. Methods Partial Differ. Equ. 8 (1992) 97-111. | MR 1148797 | Zbl 0742.76051
and ,[20] An explicit analysis of Stummel's patch test examples. Int. J. Numer. Meth. Engrg. 20 (1984) 1233-1246. | MR 751335 | Zbl 0557.65060
,[21] The FEM test for convergence of nonconforming finite elements. Math. Comput. 49 (1987) 391-405. | MR 906178 | Zbl 0648.65075
,[22] Efficient solvers for incompressible flow problems, vol. 6. Lecture Notes in Comput. Sci. Engrg. Springer, Berlin (1999). | MR 1691839 | Zbl 0930.76002
,[23] On the necessity and sufficiency of the patch test for convergence of nonconforming finite elements. SIAM J. Numer. Anal. 39 (2001) 363-384. | MR 1860273 | Zbl 1069.65116
,[24] Analysis of some quadrilateral nonconforming elements for incompressible elasticity. SIAM J. Numer. Anal. 34 (1997) 640-663. | MR 1442932 | Zbl 0870.73074
,