In this paper we consider a model shape optimization problem. The state variable solves an elliptic equation on a domain with one part of the boundary described as the graph of a control function. We prove higher regularity of the control and develop a priori error analysis for the finite element discretization of the shape optimization problem under consideration. The derived a priori error estimates are illustrated on two numerical examples.
@article{M2AN_2013__47_6_1733_0, author = {Kiniger, Bernhard and Vexler, Boris}, title = {A priori error estimates for finite element discretizations of a shape optimization problem}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {47}, year = {2013}, pages = {1733-1763}, doi = {10.1051/m2an/2013086}, zbl = {1283.49051}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2013__47_6_1733_0} }
Kiniger, Bernhard; Vexler, Boris. A priori error estimates for finite element discretizations of a shape optimization problem. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 47 (2013) pp. 1733-1763. doi : 10.1051/m2an/2013086. http://gdmltest.u-ga.fr/item/M2AN_2013__47_6_1733_0/
[1] Gascoigne: The finite element toolkit. http://www.gascoigne.uni-hd.de/
[2] Rodobo: A c++ library for optimization with stationary and nonstationary pdes. http://rodobo.uni-hd.de/
[3] Solvability of the Dirichlet problem for second-order elliptic equations in a convex domain. Differentsial′nye Uravneniya 28 (1992) 806-818, 917. | MR 1198129 | Zbl 0834.35038
and ,[4] A Primer of Nonlinear Analysis, vol. 34, Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1993). | MR 1225101 | Zbl 0818.47059
and ,[5] Finite Elemente, Springer-Verlag (2007). | Zbl 0754.65084
,[6] Error estimates for the finite-element approximation of a semilinear elliptic control problem. Control Cybernet. 31 (2002) 695-712. | MR 1978747 | Zbl 1126.49315
and ,[7] A general theorem on error estimates with application to a quasilinear elliptic optimal control problem. Comput. Optim. Appl. 53 (2012) 173-206. | MR 2964840 | Zbl 1264.49030
and ,[8] Controllability of an elliptic equation and its finite difference approximation by the shape of the domain. Numer. Math. 95 (2003) 63-99. | MR 1993939 | Zbl 1045.93023
and ,[9] Finite-element approximation of 2D elliptic optimal design. J. Math. Pures Appl. 85 (2006) 225-249. | MR 2199013 | Zbl 1086.49027
and ,[10] Polynomial approximation of functions in Sobolev spaces. Math. Comput. 34 (1980) 441-463. | MR 559195 | Zbl 0423.65009
and ,[11] On convergence in elliptic shape optimization. SIAM J. Control Optim. 46 (2007) 61-83 (electronic). | MR 2299620 | Zbl pre05240370
, , and ,[12] Elliptic problems in nonsmooth domains, vol. 24, Monographs and Studies in Mathematics, Pitman. Advanced Publishing Program, Boston, MA (1985). | MR 775683 | Zbl 0695.35060
,[13] Introduction to shape optimization. Theory, approximation, and computation, vol. 7, Advances in Design and Control, Society for Industrial and Applied Mathematics SIAM. Philadelphia, PA (2003). | MR 1969772 | Zbl 1020.74001
and ,[14] Finite element approximation for optimal shape, material and topology design. John Wiley & Sons Ltd., Chichester, 2nd edition (1996). | MR 1419500 | Zbl 0845.73001
and ,[15] Lagrange multiplier approach to variational problems and applications, vol. 15, Advances in Design and Control, Society for Industrial and Applied Mathematics. SIAM, Philadelphia, PA (2008). | MR 2441683 | Zbl 1156.49002
and ,[16] The Neumann problem on Lipschitz domains. Bull. Amer. Math. Soc. (N.S.) 4 (1981) 203-207. | MR 598688 | Zbl 0471.35026
and ,[17] The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130 (1995) 161-219. | MR 1331981 | Zbl 0832.35034
and ,[18] The regularity of the solution of the Poisson problem in a domain whose boundary is similar to that of a convex domain. Czechoslovak Math. J. 14 (1964) 386-393. | MR 170088 | Zbl 0166.37703
,[19] Numerical gradients for shape optimization based on embedding domain techniques. Comput. Optim. Appl. 18 (2001) 95-114. | MR 1818916 | Zbl 0970.90114
and ,[20] A comparison of numerical methods for optimal shape design problems. Optim. Methods Softw. 10 (1999) 497-537. | MR 1688679 | Zbl 0933.49028
,[21] Newton's method for a class of optimal shape design problems. SIAM J. Optim. 10 (2000) 503-533 (electronic). | Zbl 0956.65053
,[22] Sur la coercivité des formes sesquilinéaires, elliptiques. Rev. Roumaine Math. Pures Appl. 9 (1964) 47-69. | MR 179457 | Zbl 0196.40701
,[23] Some optimal error estimates for piecewise linear finite element approximations. Math. Comput. 38 (1982) 437-445. | MR 645661 | Zbl 0483.65007
and ,[24] Regularity results for elliptic equations in Lipschitz domains. J. Funct. Anal. 152 (1998) 176-201. | MR 1600081 | Zbl 0889.35018
,[25] Shape optimization for semi-linear elliptic equations based on an embedding domain method. Appl. Math. Optim. 49 (2004) 183-199. | MR 2033834 | Zbl 1077.49031
,[26] Introduction to shape optimization, Shape sensitivity analysis, vol. 16, Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1992). | Zbl 0761.73003
and ,[27] Optimale Steuerung partieller Differentialgleichungen, Vieweg+Teubner (2009).
,