Lower and upper bounds for the Rayleigh conductivity of a perforated plate
Laurens, S. ; Tordeux, S. ; Bendali, A. ; Fares, M. ; Kotiuga, P. R.
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 47 (2013), p. 1691-1712 / Harvested from Numdam

Lower and upper bounds for the Rayleigh conductivity of a perforation in a thick plate are usually derived from intuitive approximations and by physical reasoning. This paper addresses a mathematical justification of these approaches. As a byproduct of the rigorous handling of these issues, some improvements to previous bounds for axisymmetric holes are given as well as new estimates for tilted perforations. The main techniques are a proper use of the Dirichlet and Kelvin variational principlesin the context of Beppo-Levi spaces. The derivations are validated by numerical experiments in 2D for the axisymmetric case as well as for the full three-dimensional problem.

Publié le : 2013-01-01
DOI : https://doi.org/10.1051/m2an/2013082
Classification:  35Q35,  35J05,  35J25
@article{M2AN_2013__47_6_1691_0,
     author = {Laurens, S. and Tordeux, S. and Bendali, A. and Fares, M. and Kotiuga, P. R.},
     title = {Lower and upper bounds for the Rayleigh conductivity of a perforated plate},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {47},
     year = {2013},
     pages = {1691-1712},
     doi = {10.1051/m2an/2013082},
     mrnumber = {3123372},
     zbl = {1283.35088},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2013__47_6_1691_0}
}
Laurens, S.; Tordeux, S.; Bendali, A.; Fares, M.; Kotiuga, P. R. Lower and upper bounds for the Rayleigh conductivity of a perforated plate. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 47 (2013) pp. 1691-1712. doi : 10.1051/m2an/2013082. http://gdmltest.u-ga.fr/item/M2AN_2013__47_6_1691_0/

[1] M. Alster, Improved calculation of resonant frequencies of Helmholtz resonators. J. Sound Vibr. 24 (1972) 63-85.

[2] C. Amrouche, V. Girault and J. Giroire, Dirichlet and Neumann exterior problems for the n-dimensional Laplace operator an approach in weighted sobolev spaces. J. Math. Pures Appl. 76 (1997) 55-81. | MR 1429997 | Zbl 0878.35029

[3] A. Bendali and M. Fares, Boundary integral equations methods in acoustics. Computer Methods for Acoustics Problems, Chapter 1. Edited by F. Magoules. Saxe-Coburg Publications, Kippen, Stirlingshire, Scotland (2008) 1-36.

[4] R.C. Chanaud, Effects of geometry on the resonance frequency of Helmholtz resonators, part II. J. Sound Vibr. 204 (1997) 829-834.

[5] E.T. Copson, On the problem of the electrified disc. Proc. Edinburgh Math. Soc. (Ser. 2) 8 (1947) 14-19. | MR 23192 | Zbl 0070.44001

[6] R. Courant and D. Hilbert, Methods of Mathematical Physics. Vol. I. Interscience Publishers, Inc., New York, N.Y. (1953). | MR 65391 | Zbl 0053.02805

[7] J. Deny and J.L. Lions. Les espaces du type de Beppo Levi. Ann. Inst. Fourier 5 (1953) 54. | Numdam | MR 74787 | Zbl 0065.09903

[8] B. Enquist and A. Majda, Absorbing boundary conditions for the numerical simulation of wave. Math. Comput. 31 (1977) 629-651. | MR 436612 | Zbl 0367.65051

[9] J. Giroire, Étude de quelques problèmes aux limites extérieurs et résolution par équations intégrales. Ph.D. Thesis. Paris VI (1987).

[10] M.S. Howe, On the theory of unsteady high Reynolds number flow through a circular aperture. Proc. Roy. Soc. London A. Math. Phys. Sci. 366 (1979) 205. | MR 536282 | Zbl 0415.76060

[11] M.S. Howe, Influence of wall thickness on Rayleigh conductivity and flow-induced aperture tones. J. Fluids Struct. 11 (1997) 351-366.

[12] M.S. Howe, Acoustics of fluid-structure interactions. Cambridge University Press (1998). | MR 1664280 | Zbl 0921.76002

[13] G. C. Hsiao and W.L. Wendland, Boundary Integral Equations. Springer, Berlin-Heidelberg (2008). | MR 2441884 | Zbl 1157.65066

[14] U. Ingard, On the theory and design of acoustic resonators. J. Acoust. Soc. America 25 (1953) 1037-1061.

[15] J.B. Keller and D. Givoli, Exact non-reflecting boundary conditions. J. Comput. Phys. 82 (1989) 172-192. | MR 1005207 | Zbl 0671.65094

[16] E. Kerschen, A. Cain and G. Raman, Analytical Modeling of Helmholtz Resonator Based Powered Resonance Tubes, in 2nd AIAA Flow Control Conference, AIAA Paper 2004-2691 (2004).

[17] D.G. Luenberger, Optimization by vector space methods. Wiley-Interscience (1997). | MR 238472 | Zbl 0176.12701

[18] C. Macaskill and E.O. Tuck, Evaluation of the acoustic impedance of a screen. J. Australian Math. Soc. Ser. B Appl. Math. 20 (1977) 46-61. | MR 468611 | Zbl 0375.76066

[19] C. Malmary, Étude théorique et expérimentale de l'impédance acoustique de matériaux en présence d'un écoulement d'air tangentiel. Ph.D. thesis. University du Maine (2000).

[20] William Mclean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge, UK, and New York, USA (2000). | MR 1742312 | Zbl 0948.35001

[21] T.H. Melling, The acoustic impendance of perforates at medium and high sound pressure levels. J. Sound Vibr. 29 (1973) 1-65.

[22] S. Mendez and J.D. Eldredge, Acoustic modeling of perforated plates with bias flow for Large-Eddy Simulations. J. Comput. Phys. 228 (2009) 4757-4772. | Zbl 1166.76050

[23] J. Mohring, Helmholtz resonators with large aperture. Acta Acoust. United Acoust. 85 (1999) 751-763.

[24] C.L. Morfey, Acoustic properties of openings at low frequencies. J. Sound Vibr. 9 (1969) 357-366.

[25] R.L. Panton and J.M. Miller, Resonant frequencies of cylindrical Helmholtz resonators. J. Acoust. Soc. America 57 (1975) 1533-1535.

[26] J.W.S. Rayleigh, The Theory of Sound, vols. 1 and 2. Dover Publications, New York (1945). | MR 16009 | Zbl 0061.45904

[27] J.E. Roberts and J.-M. Thomas, Mixed and hybrid methods, in Handbook of numerical analysis. Vol. 2. Elsevier Science Publishers (1991). | MR 1115239 | Zbl 0875.65090

[28] S. Sauter and C. Schwab, Boundary Element Methods, vol. 39 of Springer Series in Computational Mathematics. Springer, Heidelberg (2010). | MR 2743235 | Zbl 1215.65183

[29] I.N. Sneddon, Mixed boundary value problems in potential theory. North-Holland Pub. Co. (1966). | MR 216018 | Zbl 0139.28801

[30] E.O. Tuck, Matching problems involving flow through small holes. Adv. Appl. Mech. 15 (1975) 89-158. | MR 468576