Discrete-velocity approximations represent a popular way for computing the Boltzmann collision operator. The direct numerical evaluation of such methods involve a prohibitive cost, typically O(N2d + 1) where d is the dimension of the velocity space. In this paper, following the ideas introduced in [C. Mouhot and L. Pareschi, C. R. Acad. Sci. Paris Sér. I Math. 339 (2004) 71-76, C. Mouhot and L. Pareschi, Math. Comput. 75 (2006) 1833-1852], we derive fast summation techniques for the evaluation of discrete-velocity schemes which permits to reduce the computational cost from O(N2d + 1) to O(N̅dNd log2N), N̅ ≪ N, with almost no loss of accuracy.
@article{M2AN_2013__47_5_1515_0, author = {Mouhot, Cl\'ement and Pareschi, Lorenzo and Rey, Thomas}, title = {Convolutive decomposition and fast summation methods for discrete-velocity approximations of the Boltzmann equation}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {47}, year = {2013}, pages = {1515-1531}, doi = {10.1051/m2an/2013078}, mrnumber = {3100773}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2013__47_5_1515_0} }
Mouhot, Clément; Pareschi, Lorenzo; Rey, Thomas. Convolutive decomposition and fast summation methods for discrete-velocity approximations of the Boltzmann equation. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 47 (2013) pp. 1515-1531. doi : 10.1051/m2an/2013078. http://gdmltest.u-ga.fr/item/M2AN_2013__47_5_1515_0/
[1] Difference scheme for the Boltzmann equation based on the fast Fourier transform. Eur. J. Mech. B Fluids 16 (1997) 293-306. | MR 1439069 | Zbl 0881.76061
and ,[2] Exact solutions of the Boltzmann equation. Dokl. Akad. Nauk SSSR 225 (1975) 1296-1299. | MR 398380 | Zbl 0361.76082
,[3] On approximation of the Boltzmann equation by discrete velocity models. C. R. Acad. Sci. Paris Sér. I Math. 320 (1995) 639-644. | MR 1322351 | Zbl 0834.76078
, and ,[4] Fast deterministic method of solving the Boltzmann equation for hard spheres. Eur. J. Mech. B Fluids 18 (1999) 869-887. | MR 1728639 | Zbl 0965.76059
and ,[5] Numerical solution of the Boltzmann equation using a fully conservative difference scheme based on the fast fourier transform. Trans. Theory Statist. Phys. 29 (2000) 289-310. | MR 1770434 | Zbl 1017.82042
and ,[6] Construction of discrete kinetic models with given invariants. J. Statist. Phys. 132 (2008) 153-170. | MR 2407374 | Zbl 1214.82087
and ,[7] A discrete-velocity scheme for the Boltzmann operator of rarefied gas dynamics. Trans. Theory Statist. Phys. 25 (1996) 33-60. | MR 1380030 | Zbl 0857.76079
,[8] The Discrete Boltzmann Equation (Theory and Applications). University of California, College of engineering, Los-Angeles (2003). | MR 2012006
, and ,[9] Spectral methods in fluid dynamics. Springer Series in Computational Physics. Springer-Verlag, New York (1988). | MR 917480 | Zbl 0717.76004
, , and ,[10] Sur la théorie de l'équation intégrodifférentielle de Boltzmann. Acta Math. 60 (1933) 91-146. | JFM 59.0404.02 | MR 1555365
,[11] Theory and application of the Boltzmann equation. Elsevier, New York (1975). | MR 406273 | Zbl 0403.76065
,[12] The mathematical theory of dilute gases, in vol. 106 of Appl. Math. Sci. Springer-Verlag, New York (1994). | MR 1307620 | Zbl 0813.76001
, and ,[13] An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19 (1965) 297-301. | MR 178586 | Zbl 0127.09002
and ,[14] A deterministic method for solving the homogeneous Boltzmann equation. Rech. Aérospat. 3 (1992) 1-10. | MR 1192070 | Zbl 0747.65098
, and ,[15] A numerical scheme for the quantum Boltzmann equation efficient in the fluid regime. ESAIM: M2AN 42 (2012) 443-463. | Numdam | Zbl 1277.82046
, and ,[16] Analysis of spectral methods for the homogeneous Boltzmann equation. Trans. Amer. Math. Soc. 363 (2011) 1947-1980. | MR 2746671 | Zbl 1213.82069
and ,[17] Solving the Boltzmann equation in N log2N. SIAM J. Sci. Comput. 28 (2006) 1029. | MR 2240802 | Zbl 1174.82012
, and ,[18] Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states. J. Comput. Phys. 228 (2009) 2012-2036. | MR 2500671 | Zbl 1159.82320
and ,[19] An introduction to the theory of numbers, sixth ed. Oxford University Press, Oxford (2008). Revised by D.R. Heath-Brown and J.H. Silverman, with a foreword by Andrew Wiles. | MR 2445243 | Zbl 1159.11001
and ,[20] A fast spectral algorithm for the quantum Boltzmann collision operator, to appear in CMS. Preprint (2011). | MR 2911206 | Zbl 1260.82068
and ,[21] Numerical solution of the Boltzmann equation on the uniform grid. Comput. 69 (2002) 163-186. | MR 1954793 | Zbl 1010.82036
and ,[22] Numerical solutions of the Boltzmann equation: comparison of different algorithms. Eur. J. Mech. B Fluids 27 (2008) 62-74. | MR 2378496 | Zbl 1129.76040
, , and ,[23] Exact solutions of the Boltzmann equation. Phys. Fluids 20 (1977) 1589. | Zbl 0369.76075
and ,[24] Fast, conservative and entropic numerical methods for the Boson Boltzmann equation. Numer. Math. 99 (2005) 509-532. | MR 2117737 | Zbl 1204.82031
and ,[25] Une méthode déterministe pour la résolution de l'équation de Boltzmann inhomogène. C. R. Acad. Sci. Paris Sér. I Math. 314 (1992) 483-487. | MR 1154392 | Zbl 0747.65098
, and ,[26] Approximation simultanée de réels par des nombres rationnels et noyau de collision de l'équation de Boltzmann. C. R. Acad. Sci. Sér. I Math. 330 (2000) 857-862. | MR 1769961 | Zbl 0960.65145
and ,[27] Fast methods for the Boltzmann collision integral. C. R. Acad. Sci. Paris Sér. I Math. 339 (2004) 71-76. | MR 2075236 | Zbl 1054.76067
and ,[28] Fast algorithms for computing the Boltzmann collision operator. Math. Comput. 75 (2006) 1833-1852. | MR 2240637 | Zbl 1105.76043
and ,[29] Multidimensional Farey partitions. Indag. Math. (N.S.) 17 (2006) 437-456. | MR 2321111 | Zbl 1142.11006
and ,[30] A new consistent discret-velocity model for the Boltzmann equation. Math. Models Methods Appl. Sci. 25 (2002) 571-593. | MR 1895119 | Zbl 0997.82036
and ,[31] A Fourier spectral method for homogeneous Boltzmann equations. In Proc. of the Second International Workshop on Nonlinear Kinetic Theories and Mathematical Aspects of Hyperbolic Systems (Sanremo, 1994), Trans. Theory Statist. Phys. 25 (1996) 369-382. | MR 1407541 | Zbl 0870.76074
and ,[32] Numerical solution of the Boltzmann equation. I. Spectrally accurate approximation of the collision operator. SIAM J. Numer. Anal. 37 (2000) 1217-1245. | MR 1756425 | Zbl 1049.76055
and ,[33] On the stability of spectral methods for the homogeneous Boltzmann equation. In Proc. of the Fifth International Workshop on Mathematical Aspects of Fluid and Plasma Dynamics (Maui, HI 1998). Trans. Theory Statist. Phys. 29 (2000) 431-447. | MR 1770438 | Zbl 1019.82016
and ,[34] Discrete velocity models of the Boltzmann equation: a survey on the mathematical aspects of the theory. SIAM Rev. 30 (1988) 213-255. | MR 941111 | Zbl 0668.76087
and ,[35] An acceleration procedure for discrete velocity approximation of the Boltzmann collision operator. Comput. Math. Appl. 39 (2000) 151-163. | MR 1742479 | Zbl 0949.65141
and ,[36] A direct method for solving the Boltzmann equation. Trans. Theory Statist. Phys. 23 (1994) 313-338. | MR 1257657 | Zbl 0811.76050
and ,[37] Acceleration schemes of the discrete velocity method: Gaseous flows in rectangular microchannels. SIAM J. Sci. Comput. 25 (2003) 534-552. | MR 2058074 | Zbl 1163.65302
and ,[38] A review of mathematical topics in collisional kinetic theory. Elsevier Science (2002). | MR 1942465 | Zbl 1170.82369
,