A local projection stabilization finite element method with nonlinear crosswind diffusion for convection-diffusion-reaction equations
Barrenechea, Gabriel R. ; John, Volker ; Knobloch, Petr
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 47 (2013), p. 1335-1366 / Harvested from Numdam

An extension of the local projection stabilization (LPS) finite element method for convection-diffusion-reaction equations is presented and analyzed, both in the steady-state and the transient setting. In addition to the standard LPS method, a nonlinear crosswind diffusion term is introduced that accounts for the reduction of spurious oscillations. The existence of a solution can be proved and, depending on the choice of the stabilization parameter, also its uniqueness. Error estimates are derived which are supported by numerical studies. These studies demonstrate also the reduction of the spurious oscillations.

Publié le : 2013-01-01
DOI : https://doi.org/10.1051/m2an/2013071
Classification:  65N30,  65N12,  65N15,  65M60
@article{M2AN_2013__47_5_1335_0,
     author = {Barrenechea, Gabriel R. and John, Volker and Knobloch, Petr},
     title = {A local projection stabilization finite element method with nonlinear crosswind diffusion for convection-diffusion-reaction equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {47},
     year = {2013},
     pages = {1335-1366},
     doi = {10.1051/m2an/2013071},
     mrnumber = {3100766},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2013__47_5_1335_0}
}
Barrenechea, Gabriel R.; John, Volker; Knobloch, Petr. A local projection stabilization finite element method with nonlinear crosswind diffusion for convection-diffusion-reaction equations. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 47 (2013) pp. 1335-1366. doi : 10.1051/m2an/2013071. http://gdmltest.u-ga.fr/item/M2AN_2013__47_5_1335_0/

[1] M. Augustin, A. Caiazzo, A. Fiebach, J. Fuhrmann, V. John, A. Linke and R. Umla, An assessment of discretizations for convection-dominated convection-diffusion equations. Comput. Methods Appl. Mech. Engrg. 200 (2011) 3395-3409. | MR 2844065 | Zbl 1230.76021

[2] R. Becker and M. Braack, A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38 (2001) 173-199. | MR 1890352 | Zbl 1008.76036

[3] R. Becker and M. Braack, A two-level stabilization scheme for the Navier-Stokes equations, Proc. of ENUMATH 2003, Numerical Mathematics and Advanced Applications, edited by M. Feistauer, V. Dolejıš´, P. Knobloch and K. Najzar. Springer-Verlag, Berlin (2004) 123-130. | MR 2121360 | Zbl 1198.76062

[4] M. Braack and E. Burman, Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method. SIAM J. Numer. Anal. 43 (2006) 2544-2566. | MR 2206447 | Zbl 1109.35086

[5] M. Braack, E. Burman, V. John and G. Lube, Stabilized finite element methods for the generalized Oseen problem. Comput. Methods Appl. Mech. Engrg. 196 (2007) 853-866. | MR 2278180 | Zbl 1120.76322

[6] A.N. Brooks and T.J.R. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 32 (1982) 199-259. | MR 679322 | Zbl 0497.76041

[7] E. Burman and A. Ern, Stabilized Galerkin approximation of convection-diffusion-reaction equations: discrete maximum principle and convergence. Math. Comput. 74 (2005) 1637-1652. | MR 2164090 | Zbl 1078.65088

[8] E. Burman and M.A. Fernández, Finite element methods with symmetric stabilization for the transient convection-diffusion-reaction equation. Comput. Methods Appl. Mech. Engrg. 198 (2009) 2508-2519. | MR 2536082 | Zbl 1228.76081

[9] E. Burman and P. Hansbo, Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems. Comput. Methods Appl. Mech. Engrg. 193 (2004) 1437-1453. | MR 2068903 | Zbl 1085.76033

[10] P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). | MR 520174 | Zbl 0511.65078

[11] R. Codina, A discontinuity-capturing crosswind-dissipation for the finite element solution of the convection-diffusion equation. Comput. Methods Appl. Mech. Engrg. 110 (1993) 325-342. | MR 1256324 | Zbl 0844.76048

[12] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. Springer-Verlag, New York (2004). | MR 2050138 | Zbl 1059.65103

[13] L.P. Franca, S.L. Frey and T.J.R. Hughes, Stabilized finite element methods: I. Application to the advective-diffusive model. Comput. Methods Appl. Mech. Engrg. 95 (1992) 253-276. | MR 1155924 | Zbl 0759.76040

[14] L.P. Franca and F. Valentin, On an improved unusual stabilized finite element method for the advective-reactive-diffusive equation. Comput. Methods Appl. Mech. Engrg. 190 (2000) 1785-1800. | MR 1807478 | Zbl 0976.76038

[15] S. Ganesan and L. Tobiska, Stabilization by local projection for convection-diffusion and incompressible flow problems. J. Sci. Comput. 43 (2010) 326-342. | MR 2639639 | Zbl 1203.76138

[16] T.J.R. Hughes, L.P. Franca and G.M. Hulbert, A new finite element formulation for computational fluid dynamics. VIII. The Galerkin/least-squares method for advective-diffusive equations. Comput. Methods Appl. Mech. Engrg. 73 (1989) 173-189. | MR 1002621 | Zbl 0697.76100

[17] V. John and P. Knobloch, On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations: Part I - A review. Comput. Methods Appl. Mech. Engrg. 196 (2007) 2197-2215. | MR 2302890 | Zbl 1173.76342

[18] V. John and P. Knobloch, On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations: Part II - Analysis for P1 and Q1 finite elements. Comput. Methods Appl. Mech. Engrg. 197 (2008) 1997-2014. | MR 2417168 | Zbl 1194.76122

[19] V. John, P. Knobloch and S.B. Savescu, A posteriori optimization of parameters in stabilized methods for convection-diffusion problems - Part I. Comput. Methods Appl. Mech. Engrg. 200 (2011) 2916-2929. | MR 2824164 | Zbl 1230.76026

[20] V. John, J.M. Maubach and L. Tobiska, Nonconforming streamline-diffusion-finite-element-methods for convection-diffusion problems. Numer. Math. 78 (1997) 165-188. | MR 1485996 | Zbl 0898.65068

[21] V. John, T. Mitkova, M. Roland, K. Sundmacher, L. Tobiska and A. Voigt, Simulations of population balance systems with one internal coordinate using finite element methods. Chem. Engrg. Sci. 64 (2009) 733-741.

[22] V. John and J. Novo, Error analysis of the SUPG finite element discretization of evolutionary convection-diffusion-reaction equations. SIAM J. Numer. Anal. 49 (2011) 1149-1176. | MR 2812562 | Zbl 1233.65065

[23] V. John and E. Schmeyer, Finite element methods for time-dependent convection-diffusion-reaction equations with small diffusion. Comput. Methods Appl. Mech. Engrg. 198 (2008) 475-494. | MR 2479278 | Zbl 1228.76088

[24] P. Knobloch, A generalization of the local projection stabilization for convection-diffusion-reaction equations. SIAM J. Numer. Anal. 48 (2010) 659-680. | MR 2670000 | Zbl 1251.65159

[25] P. Knobloch, Local projection method for convection-diffusion-reaction problems with projection spaces defined on overlapping sets. Proc. of ENUMATH 2009, Numerical Mathematics and Advanced Applications, edited by G. Kreiss, P. Lötstedt, A. M?lqvist and M. Neytcheva. Springer-Verlag, Berlin (2010) 497-505. | Zbl 1216.65157

[26] P. Knobloch and G. Lube, Local projection stabilization for advection-diffusion-reaction problems: One-level vs. two-level approach. Appl. Numer. Math. 59 (2009) 2891-2907. | MR 2560823 | Zbl 1180.65139

[27] T. Knopp, G. Lube and G. Rapin, Stabilized finite element methods with shock capturing for advection-diffusion problems. Comput. Methods Appl. Mech. Engrg. 191 (2002) 2997-3013. | MR 1903196 | Zbl 1001.76058

[28] O.A. Ladyzhenskaya, New equations for the description of motion of viscous incompressible fluids and solvability in the large of boundary value problems for them. Tr. Mat. Inst. Steklova 102 (1967) 85-104. | MR 226907 | Zbl 0202.37802

[29] G. Lube and G. Rapin, residual-based stabilized higher-order FEM for advection-dominated problems. Comput. Methods Appl. Mech. Engrg. 195 (2006) 4124-4138. | MR 2229836 | Zbl 1125.76042

[30] G. Matthies, P. Skrzypacz and L. Tobiska, A unified convergence analysis for local projection stabilizations applied to the Oseen problem. Math. Model. Numer. Anal. 41 (2007) 713-742. | Numdam | MR 2362912 | Zbl 1188.76226

[31] H.-G. Roos, M. Stynes and L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion-Reaction and Flow Problems, 2nd ed. Springer-Verlag, Berlin (2008). | MR 2454024 | Zbl 1155.65087

[32] R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis North-Holland, Amsterdam (1977). | MR 609732 | Zbl 0568.35002