A subspace correction method for discontinuous Galerkin discretizations of linear elasticity equations
Ayuso de Dios, Blanca ; Georgiev, Ivan ; Kraus, Johannes ; Zikatanov, Ludmil
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 47 (2013), p. 1315-1333 / Harvested from Numdam

We study preconditioning techniques for discontinuous Galerkin discretizations of isotropic linear elasticity problems in primal (displacement) formulation. We propose subspace correction methods based on a splitting of the vector valued piecewise linear discontinuous finite element space, that are optimal with respect to the mesh size and the Lamé parameters. The pure displacement, the mixed and the traction free problems are discussed in detail. We present a convergence analysis of the proposed preconditioners and include numerical examples that validate the theory and assess the performance of the preconditioners.

Publié le : 2013-01-01
DOI : https://doi.org/10.1051/m2an/2013070
Classification:  65F10,  65N20,  65N30
@article{M2AN_2013__47_5_1315_0,
     author = {Ayuso de Dios, Blanca and Georgiev, Ivan and Kraus, Johannes and Zikatanov, Ludmil},
     title = {A subspace correction method for discontinuous Galerkin discretizations of linear elasticity equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {47},
     year = {2013},
     pages = {1315-1333},
     doi = {10.1051/m2an/2013070},
     mrnumber = {3100765},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2013__47_5_1315_0}
}
Ayuso de Dios, Blanca; Georgiev, Ivan; Kraus, Johannes; Zikatanov, Ludmil. A subspace correction method for discontinuous Galerkin discretizations of linear elasticity equations. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 47 (2013) pp. 1315-1333. doi : 10.1051/m2an/2013070. http://gdmltest.u-ga.fr/item/M2AN_2013__47_5_1315_0/

[1] D.N. Arnold, F. Brezzi, B. Cockburn and L. Donatella Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2001/02) 1749-1779. | MR 1885715 | Zbl 1008.65080

[2] D.N. Arnold, Franco Brezzi, R. Falk and L. Donatella Marini, Locking-free Reissner-Mindlin elements without reduced integration. Comput. Methods Appl. Mech. Engrg. 196 (2007) 3660-3671. | MR 2339992 | Zbl 1173.74396

[3] D.N. Arnold, F. Brezzi and L. Donatella Marini, A family of discontinuous Galerkin finite elements for the Reissner-Mindlin plate. J. Sci. Comput. 22-23 (2005) 25-45. | MR 2142189 | Zbl 1065.74068

[4] B. Ayuso De Dios and L. Zikatanov, Uniformly convergent iterative methods for discontinuous Galerkin discretizations. J. Sci. Comput. 40 (2009) 4-36. | MR 2511726 | Zbl 1203.65242

[5] R. Blaheta, S. Margenov and M. Neytcheva, Aggregation-based multilevel preconditioning of non-conforming fem elasticity problems. Applied Parallel Computing. State of the Art in Scientific Computing, edited by J. Dongarra, K. Madsen and J. Wasniewski. In Lect. Notes Comput. Sci., vol. 3732. Springer Berlin/Heidelberg (2006) 847-856.

[6] F. Brezzi, B. Cockburn, L.D. Marini and E. Süli, Stabilization mechanisms in discontinuous Galerkin finite element methods. Comput. Methods Appl. Mech. Engrg. 195 (2006) 3293-3310. | MR 2220920 | Zbl 1125.65102

[7] E. Burman and B. Stamm, Low order discontinuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47 (2008) 508-533. | MR 2475950 | Zbl 1190.65170

[8] G. Duvaut and J.-L. Lions, Inequalities in mechanics and physics. Springer-Verlag, Berlin, Translated from the French by C.W. John, Grundlehren der Mathematischen Wissenschaften 219 (1976). | MR 521262 | Zbl 0331.35002

[9] R.S. Falk, Nonconforming finite element methods for the equations of linear elasticity. Math. Comput. 57 (1991) 529-550. | MR 1094947 | Zbl 0747.73044

[10] I. Georgiev, J.K. Kraus and S. Margenov, Multilevel preconditioning of Crouzeix-Raviart 3D pure displacement elasticity problems. Large Scale Scientific Computing, edited by I. Lirkov, S. Margenov and J. Wasniewski. In Lect. Notes Comput. Science, vol. 5910. Springer, Berlin, Heidelberg (2010) 103-110. | Zbl 1280.74036

[11] P. Hansbo and M.G. Larson, Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche's method. Comput. Methods Appl. Mech. Engrg. 191 (2002) 1895-1908. | MR 1886000 | Zbl 1098.74693

[12] P. Hansbo and M.G. Larson, Discontinuous Galerkin and the Crouzeix-Raviart element: application to elasticity. ESAIM: M2AN 37 (2003) 63-72. | Numdam | MR 1972650 | Zbl 1137.65431

[13] M.R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems. J. Research Nat. Bur. Standards 49 409-436 (1953), 1952. | MR 60307 | Zbl 0048.09901

[14] J. Kraus and S. Margenov, Robust algebraic multilevel methods and algorithms. Walter de Gruyter GmbH and Co. KG, Berlin. Radon Ser. Comput. Appl. Math. 5 (2009). | MR 2574100 | Zbl 1184.65113

[15] Y. Saad, Iterative methods for sparse linear systems. Society Industrial Appl. Math. Philadelphia, PA, 2nd (2003). | MR 1990645 | Zbl 1031.65046

[16] T.P. Wihler, Locking-free DGFEM for elasticity problems in polygons. IMA J. Numer. Anal. 24 (2004) 45-75. | MR 2027288 | Zbl 1057.74046

[17] T.P. Wihler, Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems. Math. Comput. 75 (2006) 1087-1102. | MR 2219020 | Zbl 1088.74047