In this article we consider elliptic partial differential equations with random coefficients and/or random forcing terms. In the current treatment of such problems by stochastic Galerkin methods it is standard to assume that the random diffusion coefficient is bounded by positive deterministic constants or modeled as lognormal random field. In contrast, we make the significantly weaker assumption that the non-negative random coefficients can be bounded strictly away from zero and infinity by random variables only and may have distributions different from a lognormal one. We show that in this case the standard stochastic Galerkin approach does not necessarily produce a sequence of approximate solutions that converges in the natural norm to the exact solution even in the case of a lognormal coefficient. By using weighted test function spaces we develop an alternative stochastic Galerkin approach and prove that the associated sequence of approximate solutions converges to the exact solution in the natural norm. Hereby, ideas for the case of lognormal coefficient fields from earlier work of Galvis, Sarkis and Gittelson are used and generalized to the case of positive random coefficient fields with basically arbitrary distributions.
@article{M2AN_2013__47_5_1237_0, author = {Mugler, Antje and Starkloff, Hans-J\"org}, title = {On the convergence of the stochastic Galerkin method for random elliptic partial differential equations}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {47}, year = {2013}, pages = {1237-1263}, doi = {10.1051/m2an/2013066}, mrnumber = {3100762}, zbl = {1297.65010}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2013__47_5_1237_0} }
Mugler, Antje; Starkloff, Hans-Jörg. On the convergence of the stochastic Galerkin method for random elliptic partial differential equations. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 47 (2013) pp. 1237-1263. doi : 10.1051/m2an/2013066. http://gdmltest.u-ga.fr/item/M2AN_2013__47_5_1237_0/
[1] Handbook of Mathematical Functions. Dover Publications, Inc, New York (1965).
and ,[2] A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data. SIAM J. Numer. Anal. 45 (2007) 1005-1034. | MR 2318799 | Zbl 1151.65008
, and ,[3] Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations. SIAM J. Numer. Anal. 42 (2004) 800-825. | MR 2084236 | Zbl 1080.65003
, and ,[4] Solving elliptic boundary-value problems with uncertain coefficients by the finite element method: the stochastic formulation. Comput. Methods Appl. Mech. Engrg. 194 (2005) 1251-1294. | MR 2121215 | Zbl 1087.65004
, and ,[5] Sparse tensor discretization of elliptic SPDEs. SIAM J. Sci. Comput. 31 (2009) 4281-4304. | MR 2566594 | Zbl 1205.35346
, and ,[6] Sparse high order FEM for elliptic sPDEs. Comput. Methods Appl. Mech. Engrg. 198 (2009) 1149-1170. | MR 2500242 | Zbl 1157.65481
and ,[7] Functional Analysis for Probability and Stochastic Processes. Cambridge University Press, Cambridge UK (2005). | MR 2176612 | Zbl 1092.46001
,[8] The Mathematical Theory of Finite Element Methods, 2nd ed. Texts in Appl. Math., vol. 15. Springer-Verlag, New York (2002). | MR 1894376 | Zbl 1012.65115
and ,[9] Spectral Methods: Fundamentals in Single Domains. Springer-Verlag, Berlin Heidelberg (2006). | MR 2223552 | Zbl 1121.76001
, , and ,[10] Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs. Foundations Comput. Math. 10 (2010) 615-646. | MR 2728424 | Zbl 1206.60064
, and ,[11] Solution of stochastic partial differential equations using Galerkin finite element techniques. Comput. Methods Appl. Mech. Engrg. 190 (2001) 6359-6372. | MR 1870425 | Zbl 1075.65006
, and ,[12] Computational aspects of the stochastic finite element method. Comput. Visualiz. Sci. 10 (2007) 3-15. | MR 2295930 | Zbl 1123.65004
, and ,[13] On the convergence of generalized polynomial chaos. ESAIM: M2AN 46 (2012) 317-339. | Numdam | MR 2855645 | Zbl 1273.65012
, , and ,[14] Convergence Properties of Polynomial Chaos Approximations for L2-Random Variables, Sandia Report SAND2007-1262 (2007).
and ,[15] Finite elements for elliptic problems with stochastic coefficients. Comput. Methods Appl. Mech. Engrg. 194 (2005) 205-228. | MR 2105161 | Zbl 1143.65392
, and ,[16] A Stochastical-Conceptual Analysis of One-Dimensional Groundwater Flow in Nonuniform Homogeneous Media. Water Resources Research (1975) 725-741.
,[17] Approximating infinity-dimensional stochastic Darcy‘s Equations without uniform ellipticity. SIAM J. Numer. Anal. 47 (2009) 3624-3651. | MR 2576514 | Zbl 1205.60121
and ,[18] Regularity results for the ordinary product stochastic pressure equation, to appear in SIAM J. Math. Anal. (preprint 2011) 1-31. | MR 3023390 | Zbl 1258.60041
and ,[19] Ingredients for a general purpose stochastic finite elements implementation. Comput. Methods Appl. Mech. Engrg. 168 (1999) 19-34. | MR 1666714 | Zbl 0943.65008
,[20] Stochastic Finite Elements with Multiple Random Non-Gaussian Properties. J. Engrg. Mech. 125 (1999) 26-40.
,[21] Stochastic Finite Element Analysis for Multiphase Flow in Heterogeneous Porous Media. Transport in Porous Media 32 (1998) 239-262. | MR 1776495
and ,[22] Stochastic Finite Elements: A Spectral Approach. Springer-Verlag, New York (1991). | MR 1083354 | Zbl 0722.73080
and ,[23] Stochastic Galerkin discretization of the log-normal isotropic diffusion problem. Math. Models Methods Appl. Sci. 20 (2010) 237-263. | MR 2649152 | Zbl pre05684685
,[24] Minimal recurrence relations for connection coefficients between classical orthogonal polynomials: Continuous case. J. Computat. Appl. Math. 84 (1997) 257-275. | MR 1475378 | Zbl 0909.65008
, , and ,[25] Functional Analysis and Semi-Groups, Colloquium Publications. Amer. Math. Soc. 31 (1957). | MR 89373 | Zbl 0078.10004
and ,[26] Foundations of modern probability. Springer-Verlag, Berlin (2001). | MR 1876169 | Zbl 0892.60001
,[27] Spectral Methods for Uncertainty Quantification. Scientific Computation: With Applications to Computational Fluid Dynamics. Springer-Verlag (2010). | MR 2605529 | Zbl 1193.76003
and ,[28] Probability Theory II. 4th Edition. Springer-Verlag, New York, Heidelberg, Berlin (1978). | Zbl 0108.14202
,[29] C. H Su and G.E. Karniadakis, Generalized polynomial chaos and random oscillators. Int. J. Numer. Methods Engrg. 60 (2004) 571-596. | MR 2057526 | Zbl 1060.70515
,[30] Connection coefficients between orthogonal polynomials and the canonical sequence: an approach based on symbolic computation. Numer. Algor. 47 (2008) 291-314. | MR 2385739 | Zbl 1147.65020
and ,[31] Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comput. Methods Appl. Mech. Engrg. 194 (2005) 1295-1331. | MR 2121216 | Zbl 1088.65002
and ,[32] On elliptic partial differential equations with random coefficients. Stud. Univ. Babes-Bolyai Math. 56 (2011) 473-487. | MR 2843705
and ,[33] Computation of connection coefficients and measure modifications for orthogonal polynomials. BIT Numer. Math. (2011). | MR 2931359 | Zbl 1247.65026
and ,[34] Geostatistical Methods for the Identification of Flow and Transport Parameters in the Subsurface, Ph.D. Thesis. Universität Stuttgart (2005).
,[35] Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs. Acta Numer. 20 (2011) 291-467. | MR 2805155 | Zbl 1269.65010
and ,[36] Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients. IMA J. Numer. Anal. 27 (2007) 232-261. | MR 2317004 | Zbl 1120.65004
and ,[37] Banach Space-Valued Random Variables and Tensor Products of Banach Spaces. J. Math. Anal. Appl. 31 (1970) 49-67. | MR 261650 | Zbl 0292.60008
and ,[38] Beyond Wiener Askey Expansions: Handling Arbitrary PDFs. J. Scient. Comput. 27 (2006) 455-464. | MR 2285794 | Zbl 1102.65006
and ,[39] Homogeneous Chaos. Amer. J. Math. 60 (1938) 897-936. | JFM 64.0887.02 | MR 1507356
,[40] Numerical methods for stochastic computations: A spectral method approach. Princeton Univ. Press, Princeton and NJ (2010). | MR 2723020 | Zbl 1210.65002
,[41] Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos. Comput. Methods Appl. Mech. Engrg. 191 (2002) 4927-4948. | MR 1932024 | Zbl 1016.65001
and ,[42] The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations. SIAM J. Sci. Comput. 24 (2002) 619-644. | MR 1951058 | Zbl 1014.65004
and ,[43] A new stochastic approach to transient heat conduction modeling with uncertainty. Inter. J. Heat and Mass Transfer 46 (2003) 4681-4693. | Zbl 1038.80003
and ,[44] Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187 (2003) 137-167. | MR 1977783 | Zbl 1047.76111
and ,[45] C. H Su and G.E. Karniadakis, Performance Evaluation of Generalized Polynomial Chaos, Computational Science - ICCS 2003, edited by P.M.A. Sloot, D. Abramson, A.V. Bogdanov, J.J. Dongarra, Albert Y. Zomaya and Y.E. Gorbachev, Lect. Notes Comput. Sci., vol. 2660. Springer Verlag (2003). | MR 2103735 | Zbl 1188.60038
, ,[46] Stochastic Methods for Flow in Porous Media. Coping with Uncertainties. Academic Press, San Diego, CA (2002).
,