We consider here the Interior Penalty Discontinuous Galerkin (IPDG) discretization of the wave equation. We show how to derive the optimal penalization parameter involved in this method in the case of regular meshes. Moreover, we provide necessary stability conditions of the global scheme when IPDG is coupled with the classical Leap-Frog scheme for the time discretization. Numerical experiments illustrate the fact that these conditions are also sufficient.
@article{M2AN_2013__47_3_903_0, author = {Agut, Cyril and Diaz, Julien}, title = {Stability analysis of the Interior Penalty Discontinuous Galerkin method for the wave equation}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {47}, year = {2013}, pages = {903-932}, doi = {10.1051/m2an/2012061}, mrnumber = {3056414}, zbl = {1266.65151}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2013__47_3_903_0} }
Agut, Cyril; Diaz, Julien. Stability analysis of the Interior Penalty Discontinuous Galerkin method for the wave equation. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 47 (2013) pp. 903-932. doi : 10.1051/m2an/2012061. http://gdmltest.u-ga.fr/item/M2AN_2013__47_3_903_0/
[1] Stability analysis of the interior penalty discontinuous Galerkin method for the wave equation. INRIA Res. Report (2010).
and ,[2] Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation. J. Sci. Comput. 27 (2006). | MR 2285764 | Zbl 1102.76032
, and ,[3] An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742-760. | MR 664882 | Zbl 0482.65060
,[4] Unified analysis of disconitnuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 1749-1779. | MR 1885715 | Zbl 1008.65080
, , and ,[5] Modélisation et simulation numérique pour la migration terrestre par équation d'ondes. Ph.D. Thesis (2009).
,[6] A discontinuous finite element formulation for Helmholtz equation. Comput. Methods. Appl. Mech. Engrg. 195 (2006) 4018-4035. | MR 2229833 | Zbl 1123.65113
, , and ,[7] Higher-Order Numerical Methods for Transient Wave Equations. Springer, Berlin (2001). | MR 1870851 | Zbl 0985.65096
,[8] Higher-order triangular finite elements with mass-lumping for the wave equation. SIAM J. Numer. Anal. 44 (2006) 2408-2431. | Zbl 1019.65077
, , and ,[9] Higher-order finite elements with mass-lumping for the 1d wave equation. Finite Elem. Anal. Des. 16 (1994) 329-336. | MR 1286095 | Zbl 0865.65072
, and ,[10] The application of high order differencing for the scalar wave equation. Geophys. 51 (1986) 54-56.
,[11] Stability of the high-order finite elements for acoustic or elastic wave propagation with high-order time stepping. Geophys. J. Int. 181 (2010) 577-590.
and ,[12] Estimation of penalty parameters for symmetric interior penalty galerkin methods. J. Comput. Appl. Math. 206 (2007) 843-872. | MR 2333718 | Zbl 1141.65078
and ,[13] Eléments finis mixtes spectraux et couches absorbantes parfaitement adaptées pour la propagation d'ondes élastiques en régime transitoire. Ph.D. Thesis (2003).
,[14] Higher order time stepping for second order hyperbolic problems and optimal CFL conditions. Comput. Methods Appl. Sci. 16 (2008) 67-93. | MR 2484685 | Zbl 1149.65070
and ,[15] Discontinuous Galerkin finite element method for the wave equation. SIAM J. Numer. Anal. 44 (2006) 2408-2431. | MR 2272600 | Zbl 1129.65065
, and ,[16] Convergence analysis of a fully discrete dicontinuous Galerkin method for the wave equation. Preprint No. 2008-04 (2008).
and ,[17] Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophys J. Int. 139 (1999) 806-822.
and ,[18] Systems of conservation laws. Commun. Pure Appl. Math. XIII (1960) 217-237. | MR 120774 | Zbl 0152.44802
and ,[19] Spectral element method for acoustic wave simulation in heterogeneous media. Finite Elem. Anal. Des. 16 (1994) 37-348. | MR 1286096 | Zbl 0810.73079
and ,[20] An explicit expression for the penalty parameter of the interior penalty method. J. Comput. Phys. 205 (2005) 401-407. | Zbl 1072.65149
,[21] A modified equation approach to constructing fourth-order methods for acoustic wave propagation. SIAM J. Sci. Statist. Comput. 8 (1987) 135-151. | MR 879407 | Zbl 0611.76091
and ,[22] On the constants in hp-finite element trace inverse inequalities. Comput. Methods Appl. Mech. Engrg. 192 (2003) 2765-2773. | MR 1986022 | Zbl 1038.65116
and ,