For a two phase incompressible flow we consider a diffuse interface model aimed at addressing the movement of three-phase (fluid-fluid-solid) contact lines. The model consists of the Cahn Hilliard Navier Stokes system with a variant of the Navier slip boundary conditions. We show that this model possesses a natural energy law. For this system, a new numerical technique based on operator splitting and fractional time-stepping is proposed. The method is shown to be unconditionally stable. We present several numerical illustrations of this scheme.
@article{M2AN_2013__47_3_743_0, author = {Salgado, Abner J.}, title = {A diffuse interface fractional time-stepping technique for incompressible two-phase flows with moving contact lines}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {47}, year = {2013}, pages = {743-769}, doi = {10.1051/m2an/2012047}, mrnumber = {3056407}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2013__47_3_743_0} }
Salgado, Abner J. A diffuse interface fractional time-stepping technique for incompressible two-phase flows with moving contact lines. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 47 (2013) pp. 743-769. doi : 10.1051/m2an/2012047. http://gdmltest.u-ga.fr/item/M2AN_2013__47_3_743_0/
[1] Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math. Mod. Methods Appl. Sci. 22 (2012) 1150013. | MR 2890451 | Zbl 1242.76342
, and ,[2] W. Bangerth, R. Hartmann and G. Kanschat, deal.II Differential Equations Analysis Library, Technical Reference. Available on http://www.dealii.org.
[3] W. Bangerth, R. Hartmann and G. Kanschat, deal.II - a general-purpose object-oriented finite element library. ACM Trans. Math. Softw. 33 (2007). | MR 2404402
[4] The physics of moving wetting lines. J. Coll. Interf. Sci. 299 (2006) 1-13.
,[5] Dynamic wetting by liquids of different viscosity. J. Coll. Interf. Sci. 253 (2002) 196-202.
and ,[6] Cahn-Hilliard/Navier-Stokes model for the simulation of three-phase flows. Transp. Porous Media 82 (2010) 463-483. | MR 2646853
, , , and ,[7] Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York, NY (1991). | MR 1115205 | Zbl 0788.73002
and ,[8] An L∞ bound for solutions of the Cahn-Hilliard equation. Arch. Ration. Mech. Anal. 133 (1995) 129-144. | MR 1367359 | Zbl 0851.35010
and ,[9] A new model for contact angle hysteresis. Netw. Heterog. Media 2 (2007) 211-225. | MR 2291819 | Zbl 1125.76011
, and ,[10] Numerical simulation of static and sliding drop with contact angle hysteresis. J. Comput. Phys. 229 (2010) 2453-2478. | MR 2586196 | Zbl pre05680394
and ,[11] Comment on “dynamic wetting by liquids of different viscosity,” by t.d. blake and y.d. shikhmurzaev. J. Coll. Interf. Sci. 280 (2004) 537-538.
and ,[12] Theory and practice of finite elements, Applied Mathematical Sciences. Springer-Verlag, New York 159, 2004. | MR 2050138 | Zbl 1059.65103
and ,[13] Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows. SIAM J. Numer. Anal. 44 (2006) 1049-1072. | MR 2231855 | Zbl pre05167765
,[14] A gradient stable scheme for a phase field model for the moving contact line problem. J. Comput. Phys. 231 (2012) 1372-1386. | MR 2876459 | Zbl pre06036056
and ,[15] Generalized Navier boundary condition and geometric conservation law for surface tension. Comput. Methods Appl. Mech. Engrg. 198 (2009) 644-656. | MR 2498521 | Zbl 1229.76037
and ,[16] Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Springer Series in Computational Mathematics. Springer-Verlag, Berlin, Germany (1986). | MR 851383 | Zbl 0585.65077
and ,[17] Error analysis of pressure-correction schemes for the Navier-Stokes equations with open boundary conditions. SIAM J. Num. Anal. 43 (2005) 239-258. | MR 2177143 | Zbl 1083.76044
, and ,[18] A projection FEM for variable density incompressible flows. J. Comput. Phys. 165 (2000) 167-188. | MR 1795396 | Zbl 0994.76051
and ,[19] A splitting method for incompressible flows with variable density based on a pressure Poisson equation. J. Comput. Phys. 228 (2009) 2834-2846. | MR 2509298 | Zbl 1159.76028
and ,[20] A least-squares/finite element method for the numerical solution of the Navier-Stokes-Cahn-Hilliard system modeling the motion of the contact line. J. Comput. Phys. 230 (2011) 4991-5009. | MR 2795993 | Zbl pre05920272
, and ,[21] Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Coll. Interf. Sci. 35 (1971) 85-101.
and ,[22] Calculation of two-phase Navier-Stokes flows using phase-field modeling. J. Comput. Phys. 155 (1999) 96-127. | MR 1716497 | Zbl 0966.76060
,[23] Finite element approximation of a Cahn-Hilliard-Navier-Stokes system. Interfaces Free Bound. 10 (2008) 15-43. | MR 2383535 | Zbl 1144.35043
, and ,[24] Efficient numerical solution of Cahn-Hilliard-Navier-Stokes fluids in 2D. SIAM J. Sci. Comput. 29 (2007) 2241-2257. | MR 2357613 | Zbl 1154.76033
and ,[25] Conservative multigrid methods for Cahn-Hilliard fluids. J. Comput. Phys. 193 (2004) 511-543. | MR 2030475 | Zbl 1109.76348
, and ,[26] An augmented method for free boundary problems with moving contact lines. Comput. & Fluids 39 (2010) 1033-1040. | MR 2644999 | Zbl 1242.76047
, , and ,[27] A variational approach to the contact angle dynamics of spreading droplets. Comput. & Fluids 38 (2009) 406-424. | MR 2645645 | Zbl 1237.76145
and ,[28] An unconditionally stable uncoupled scheme for a triphasic Cahn-Hilliard/Navier-Stokes model. Numer. Methods Partial Differ. Eqn. (2012). | MR 3022900 | Zbl pre06143725
,[29] A diffuse interface model for electrowetting on dielectric with moving contact lines (2011). Submitted to M3AS. | Zbl 1280.35114
, and ,[30] Gas bubble with a moving contact line rising in an inclined channel at finite Reynolds number. Phys. D 209 (2005) 191-204. | MR 2167452 | Zbl 1142.76371
and ,[31] Generalized Navier boundary condition for the moving contact line. Commun. Math. Sci. 1 (2003) 333-341. | MR 1980479 | Zbl 1160.76340
, and ,[32] Molecular hydrodynamics of the moving contact line in two-phase immiscible flows. Commun. Comput. Phys. 1 (2006) 1-52. | Zbl 1115.76079
, and ,[33] A variational approach to moving contact line hydrodynamics. J. Fluid Mech. 564 (2006) 333-360. | MR 2261865 | Zbl 1178.76296
, and ,[34] W. Ren and W.E, Boundary conditions for the moving contact line problem. Phys. Fluids 19 (2007) 022101. | Zbl 1146.76513
[35] Energy stable schemes for Cahn-Hilliard phase-field model of two-phase incompressible flows. Chin. Ann. Math. Ser. B 31 (2010) 743-758. | MR 2726065 | Zbl pre05816628
and ,[36] Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete Contin. Dyn. Syst. 28 (2010) 1669-1691. | MR 2679727 | Zbl 1201.65184
and ,[37] A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities. SIAM J. Sci. Comput 32 (2010) 1159-1179. | MR 2639233 | Zbl pre05880047
and ,[38] Capillary flows with forming interfaces. Chapman & Hall/CRC, Boca Raton, FL (2008). | MR 2455379 | Zbl 1165.76001
,[39] Response to the comment on [J. Colloid Interface Sci. 253 (2002) 196] by J. Eggers and R. Evans, J. Coll. Interf. Sci. 280 (2004) 539-541.
and ,[40] A level-set approach for simulations of flows with multiple moving contact lines with hysteresis. J. Comput. Phys. 207 (2005) 389-404. | MR 2144623 | Zbl 1213.76127
,[41] Wetting on rough surfaces and contact angle hysteresis: numerical experiments based on a phase field model. ESAIM: M2AN 43 (2009) 1027-1044. | Numdam | MR 2588431 | Zbl pre05636845
, and ,[42] An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47 (2009) 2269-2288. | MR 2519603 | Zbl 1201.35027
, and ,[43] Nonlinear functional analysis and its applications. I. Fixed-point theorems, Translated from the German by Peter R. Wadsack. Springer-Verlag, New York (1986). | MR 816732 | Zbl 0583.47050
,