We consider the following problem of error estimation for the optimal control of nonlinear parabolic partial differential equations: let an arbitrary admissible control function be given. How far is it from the next locally optimal control? Under natural assumptions including a second-order sufficient optimality condition for the (unknown) locally optimal control, we estimate the distance between the two controls. To do this, we need some information on the lowest eigenvalue of the reduced Hessian. We apply this technique to a model reduced optimal control problem obtained by proper orthogonal decomposition (POD). The distance between a local solution of the reduced problem to a local solution of the original problem is estimated.
@article{M2AN_2013__47_2_555_0, author = {Kammann, Eileen and Tr\"oltzsch, Fredi and Volkwein, Stefan}, title = {A posteriori error estimation for semilinear parabolic optimal control problems with application to model reduction by POD}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {47}, year = {2013}, pages = {555-581}, doi = {10.1051/m2an/2012037}, zbl = {1282.49021}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2013__47_2_555_0} }
Kammann, Eileen; Tröltzsch, Fredi; Volkwein, Stefan. A posteriori error estimation for semilinear parabolic optimal control problems with application to model reduction by POD. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 47 (2013) pp. 555-581. doi : 10.1051/m2an/2012037. http://gdmltest.u-ga.fr/item/M2AN_2013__47_2_555_0/
[1] Approximation of large-scale dynamical systems, Advances in Design and Control. Society for Industrial and Applied Mathematics SIAM, Philadelphia, PA (2005). With a foreword by Jan C. Willems. | MR 2155615 | Zbl 1158.93001
,[2] Error estimates for the numerical approximation of a semilinear elliptic control problem. Comput. Optim. Appl. 23 (2002) 201-229. | MR 1937089 | Zbl 1033.65044
, and ,[3] An ‘empirical interpolation' method : application to efficient reduced-basis discretization of partial differential equations. C. R. Math. Acad. Sci. Paris 339 (2004) 667-672. | MR 2103208 | Zbl 1061.65118
, , and ,[4] Model reduction based on spectral projection methods, in Reduction of Large-Scale Systems, edited by P. Benner, V. Mehrmann, D.C. Sorensen, Lect. Notes Comput. Sci. Eng. 45 (2005) 5-48. | MR 2503778 | Zbl 1106.93015
and ,[5] E. Casas, J.C. De los Reyes and F. Tröltzsch, Sufficient second-order optimality conditions for semilinear control problems with pointwise state constraints. SIAM : J. Optim. 19 (2008) 616-643. | MR 2425032 | Zbl 1161.49019
[6] First- and second-order optimality conditions for a class of optimal control problems with quasilinear elliptic equations. SIAM : J. Control Optim. 48 (2009) 688-718. | MR 2486089 | Zbl 1194.49025
and ,[7] Nonlinear model reduction via discrete empirical interpolation. SIAM : J. Sci. Comput. 32 (2010) 2737-2764. | MR 2684735 | Zbl 1217.65169
and ,[8] Optimality, stability, and convergence in nonlinear control. Appl. Math. Optim. 31 (1995) 297-326. | MR 1316261 | Zbl 0821.49022
, , and ,[9] Reduced basis a posteriori error bounds for parametrized linear-quadratic elliptic optimal control problems. C. R. Acad. Sci. Paris, Ser. I 349 (2011) 873-877. | MR 2835894 | Zbl 1232.49039
and ,[10] Optimization with PDE Constraints. Springer-Verlag, Berlin. Math. Model. Theory Appl. 23 (2009). | MR 2516528 | Zbl 1167.49001
, , and ,[11] Error estimates for abstract linear-quadratic optimal control problems using proper orthogonal decomposition. Comput. Optim. Appl. 39 (2008) 319-345. | MR 2396870 | Zbl 1191.49040
and ,[12] Turbulence, coherent structures, dynamical systems and symmetry. Cambridge Monographs on Mechanics. Cambridge University Press, Cambridge (1996). | MR 1422658 | Zbl 0923.76002
, and ,[13] Necessary and sufficient conditions for a local minimum 3 : Second order conditions and augmented duality. SIAM : J. Control Optim. 17 (1979) 266-288. | MR 525027 | Zbl 0417.49029
,[14] Lagrange Multiplier Approach to Variational Problems and Applications. SIAM, Philadelphia (2008). | MR 2441683 | Zbl 1156.49002
and ,[15] POD aposteriori error based inexact SQP method for bilinear elliptic optimal control problems. ESAIM : M2AN 46 (2012) 491-511. | Numdam | Zbl 1272.49059
and ,[16] Galerkin proper orthogonal decomposition methods for parabolic problems. Numer. Math. 90 (2001) 117-148. | MR 1868765 | Zbl 1005.65112
and ,[17] POD Galerkin schemes for nonlinear elliptic-parabolic systems (2011). Submitted. | Zbl 1272.49060
and ,[18] Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag, Berlin (1971). | MR 271512 | Zbl 0203.09001
,[19] Convergence of approximations vs. regularity of solutions for convex, control-constrained optimal control problems. Appl. Math. Optim. 8 (1981) 69-95. | MR 646505 | Zbl 0479.49017
,[20] Two-norm approach in stability and sensitivity analysis of optimization and optimal control problems. Adv. Math. Sci. Appl. 2 (1993) 397-443. | MR 1239267 | Zbl 0791.49015
,[21] Convergence of approximations to nonlinear optimal control problems, in Mathematical Programming with Data Perturbations, edited by Marcel-Dekker, Inc. Lect. Notes Pure Appl. Math. 195 (1997) 253-284. | MR 1472274 | Zbl 0883.49025
, and ,[22] A priori error estimates for space-time finite element discretization of semilinear parabolic optimal control problems. Numer. Math. 120 (2012) 345-386. | MR 2874969 | Zbl 1245.65074
and ,[23] Numerical verification of optimality conditions. SIAM J. Control Optim. 47 (2008) 2557-2581. | MR 2448474 | Zbl 1171.49018
and ,[24] How to check numerically the sufficient optimality conditions for infinite-dimensional optimization problems, in Optimal control of coupled systems of partial differential equations, Int. Ser. Numer. Math. 158 (2009) 297-317. | MR 2588562 | Zbl 1197.49022
and ,[25] A priori error estimates for reduced order models in finance. ESAIM : M2AN 47 (2013) 449-469. | Numdam | MR 3021694 | Zbl 1268.91182
and ,[26] Numerical solution of a time-optimal parabolic boundary-value control problem. JOTA 27 (1979) 271-290. | MR 529864 | Zbl 0372.49014
,[27] Numerical analysis of POD a posteriori error estimation for optimal control (2012). | Zbl 1275.49050
and ,[28] Comparison of the reduced-basis and POD a posteriori error estimators for an elliptic linear quadratic optimal control problem. Mathematical and Computer Modelling of Dynamical Systems, Math. Comput. Modell. Dyn. Syst. 17 (2011) 355-369. | MR 2823468 | Zbl pre06287792
, and ,[29] Optimal Control of Partial Differential Equations. American Math. Society, Providence, Theor. Methods Appl. 112 (2010). | Zbl 1195.49001
,[30] POD a posteriori error estimates for linear-quadratic optimal control problems. Comput. Optim. Appl. 44 (2009) 83-115. | MR 2556846 | Zbl 1189.49050
and ,[31] Optimal control of a phase-field model using proper orthogonal decomposition. ZAMM Z. Angew. Math. Mech. 81 (2001) 83-97. | MR 1818724 | Zbl 1007.49019
,[32] Model Reduction using Proper Orthogonal Decomposition. Lecture notes, Institute of Mathematics and Statistics, University of Konstanz (2011).
,