The continuous Coupled Cluster formulation for the electronic Schrödinger equation
Rohwedder, Thorsten
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 47 (2013), p. 421-447 / Harvested from Numdam

Nowadays, the Coupled Cluster (CC) method is the probably most widely used high precision method for the solution of the main equation of electronic structure calculation, the stationary electronic Schrödinger equation. Traditionally, the equations of CC are formulated as a nonlinear approximation of a Galerkin solution of the electronic Schrödinger equation, i.e. within a given discrete subspace. Unfortunately, this concept prohibits the direct application of concepts of nonlinear numerical analysis to obtain e.g. existence and uniqueness results or estimates on the convergence of discrete solutions to the full solution. Here, this shortcoming is approached by showing that based on the choice of an N-dimensional reference subspace R of H1(ℝ3 × {± 1/2}), the original, continuous electronic Schrödinger equation can be reformulated equivalently as a root equation for an infinite-dimensional nonlinear Coupled Cluster operator. The canonical projected CC equations may then be understood as discretizations of this operator. As the main step, continuity properties of the cluster operator S and its adjoint S† as mappings on the antisymmetric energy space H1 are established.

Publié le : 2013-01-01
DOI : https://doi.org/10.1051/m2an/2012035
Classification:  65Z05,  81-08,  70-08
@article{M2AN_2013__47_2_421_0,
     author = {Rohwedder, Thorsten},
     title = {The continuous Coupled Cluster formulation for the electronic Schr\"odinger equation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {47},
     year = {2013},
     pages = {421-447},
     doi = {10.1051/m2an/2012035},
     mrnumber = {3021693},
     zbl = {1269.82032},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2013__47_2_421_0}
}
Rohwedder, Thorsten. The continuous Coupled Cluster formulation for the electronic Schrödinger equation. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 47 (2013) pp. 421-447. doi : 10.1051/m2an/2012035. http://gdmltest.u-ga.fr/item/M2AN_2013__47_2_421_0/

[1] A.A. Auer and M. Nooijen, Dynamically screened local correlation method using enveloping localized orbitals. J. Chem. Phys. 125 (2006) 24104.

[2] R.J. Bartlett, Many-body perturbation theory and coupled cluster theory for electronic correlation in molecules. Ann. Rev. Phys. Chem. 32 (1981) 359.

[3] R.J. Bartlett and M. Musial, Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 79 (2007) 291.

[4] R.J. Bartlett and G.D. Purvis, Many-body perturbation theory, coupled-pair many-electron theory, and the importance of quadruple excitations for the correlation problem. Int. J. Quantum Chem. 14 (1978) 561.

[5] U. Benedikt, M. Espig, W. Hackbusch and A.A. Auer, Tensor decomposition in post-Hartree-Fock methods. I. Two-electron integrals and MP2. J. Chem. Phys. 134 (2011) 054118.

[6] F.A. Berezin, The Method of Second Quantization. Academic Press (1966). | MR 208930 | Zbl 0151.44001

[7] R.F. Bishop, An overview of coupled cluster theory and its applications in physics. Theor. Chim. Acta 80 (1991) 95.

[8] S.F. Boys, Construction of some molecular orbitals to be approximately invariant for changes from one molecule to another. Rev. Mod. Phys. 32 (1960) 296. | MR 122174

[9] A. Chamorro, Method for construction of operators in Fock space. Pramana 10 (1978) 83.

[10] O. Christiansen, Coupled cluster theory with emphasis on selected new developments. Theor. Chem. Acc. 116 (2006) 106.

[11] P.G. Ciarlet (Ed.) and C. Lebris (Guest Ed.), Handbook of Numerical Analysis X : Special Volume. Comput. Chem. Elsevier (2003).

[12] J. Čížek, Origins of coupled cluster technique for atoms and molecules. Theor. Chim. Acta 80 (1991) 91.

[13] F. Coerster, Bound states of a many-particle system. Nucl. Phys. 7 (1958) 421.

[14] F. Coerster and H. Kümmel, Short range correlations in nuclear wave functions. Nucl. Phys. 17 (1960) 477. | Zbl 0094.43903

[15] Computational Chemistry Comparison and Benchmark Data Base. National Institute of Standards and Technology, available on http://cccbdb.nist.gov/

[16] T.D. Crawford and H.F. Schaeffer Iii, An introduction to coupled cluster theory for computational chemists. Rev. Comput. Chem. 14 (2000) 33.

[17] H.L. Cycon, R.G. Froese, W. Kirsch and B. Simon, Schrödinger Operators with Applications to Quantum Mechanics and Global Geometry, Series Theor. Math. Phys. Springer (1987). | MR 883643 | Zbl 0619.47005

[18] V. Fock, Konfigurationsraum und zweite Quantelung. Z. Phys. 75 (1932) 622. | Zbl 0004.28003

[19] S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and T. Østergaard Sørensen, Sharp regularity results for Coulombic many-electron wave functions. Commun. Math. Phys. 255 (2005) 183. | MR 2123381 | Zbl 1075.35063

[20] C. Hampel and H.-J. Werner, Local treatment of electron correlation in coupled cluster theory. J. Chem. Phys. 104 (1996) 6286.

[21] T. Helgaker, P. Jørgensen and J. Olsen, Molecular Electronic-Structure Theory. John Wiley & Sons (2000).

[22] P.D. Hislop and I.M. Sigal, Introduction to spectral theory with application to Schrödinger operators. Appl. Math. Sci. 113 Springer (1996). | MR 1361167 | Zbl 0855.47002

[23] W. Hunziker and I.M. Sigal, The quantum N-body problem. J. Math. Phys. 41 (2000) 6. | MR 1768629 | Zbl 0981.81026

[24] T. Kato, On the eigenfunctions of many-particle systems in quantum mechanics. Commun. Pure Appl. Math. X (1957) 151. | MR 88318 | Zbl 0077.20904

[25] W. Klopper, F.R. Manby, S. Ten no and E.F. Vallev, R12 methods in explicitly correlated molecular structure theory. Int. Rev. Phys. Chem. 25 (2006) 427.

[26] W. Kutzelnigg, Error analysis and improvement of coupled cluster theory. Theor. Chim. Acta 80 (1991) 349.

[27] W. Kutzelnigg, Unconventional aspects of Coupled Cluster theory, in Recent Progress in Coupled Cluster Methods, Theory and Applications, Series : Challenges and Advances in Computational Chemistry and Physics 11 (2010). To appear.

[28] H. Kümmel, Compound pair states in imperfect Fermi gases. Nucl. Phys. 22 (1961) 177. | MR 129368 | Zbl 0094.43902

[29] H. Kümmel, K.H. Lührmann and J.G. Zabolitzky, Many-fermion theory in expS- (or coupled cluster) form. Phys. Rep. 36 (1978) 1.

[30] T.J. Lee and G.E. Scuseria, Achieving chemical accuracy with Coupled Cluster methods, in Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy, edited by S.R. Langhof. Kluwer Academic Publishers, Dordrecht (1995) 47.

[31] F. Neese, A. Hansen and D.G. Liakos, Efficient and accurate approximations to the local coupled cluster singles doubles method using a truncated pair natural orbital basis. J. Chem. Phys. 131 (2009) 064103.

[32] M. Nooijen, K.R. Shamasundar and D. Mukherjee, Reflections on size-extensivity, size-consistency and generalized extensivity in many-body theory. Mol. Phys. 103 (2005) 2277.

[33] J. Pipek and P.G. Mazay, A fast intrinsic localization procedure for ab initio and semiempirical linear combination of atomic orbital wave functions. J. Chem. Phys. 90 (1989) 4919.

[34] K. Raghavachari, G.W. Trucks, J.A. Pople and M. Head-Gordon, A fifth-order perturbation comparison of electronic correlation theories. Chem. Phys. Lett. 157 (1989) 479.

[35] M. Reed and B. Simon, Methods of Modern Mathematical Physics IV - Analysis of operators. Academic Press (1978). | MR 493421 | Zbl 0242.46001

[36] T. Rohwedder, An analysis for some methods and algorithms of Quantum Chemistry, TU Berlin, Ph.D. thesis (2010). Available on http://opus.kobv.de/tuberlin/volltexte/2010/2852/.

[37] T. Rohwedder and R. Schneider, An analysis for the DIIS acceleration method used in quantum chemistry calculations. J. Math. Chem. 49 (2011) 1889-1914. | MR 2833010 | Zbl 1252.81135

[38] T. Rohwedder and R. Schneider, Error estimates for the Coupled Cluster method. on Preprint submitted to ESAIM : M2AN (2011). Available on http://www.dfg-spp1324.de/download/preprints/preprint098.pdf. | Numdam | MR 3110488 | Zbl 1297.65139

[39] W. Rudin, Functional Analysis. Tat McGraw & Hill Publishing Company, New Delhi (1979). | MR 1157815 | Zbl 0253.46001

[40] R. Schneider, Analysis of the projected Coupled Cluster method in electronic structure calculation, Numer. Math. 113 (2009) 433. | MR 2534132 | Zbl 1170.81043

[41] M. Schütz and H.-J. Werner, Low-order scaling local correlation methods. IV. Linear scaling coupled cluster (LCCSD). J. Chem. Phys. 114 (2000) 661.

[42] B. Simon, Schrödinger operators in the 20th century. J. Math. Phys. 41 (2000) 3523. | MR 1768631 | Zbl 0981.81025

[43] A. Szabo and N.S. Ostlund, Modern Quantum Chemistry. Dover Publications Inc. (1992).

[44] G. Teschl, Mathematical methods in quantum mechanics with applications to Schrödinger operators. AMS Graduate Stud. Math. 99 (2009). | MR 2499016 | Zbl 1166.81004

[45] D.J. Thouless, Stability conditions and nuclear rotations in the Hartree-Fock theory. Nucl. Phys. 21 (1960) 225. | MR 144694 | Zbl 0097.43602

[46] J. Weidmann, Lineare Operatoren in Hilberträumen, Teil I : Grundlagen, Vieweg u. Teubner (2000). | MR 1887367 | Zbl 0344.47001

[47] J. Weidmann, Lineare Operatoren in Hilberträumen, Teil II : Anwendungen, Vieweg u. Teubner (2003). | MR 2382320 | Zbl 0344.47001

[48] H. Yserentant, Regularity and Approximability of Electronic Wave Functions. Springer-Verlag. Lect. Notes Math. Ser. 53 (2010). | MR 2656512 | Zbl 1204.35003