We consider the Laplace equation posed in a three-dimensional axisymmetric domain. We reduce the original problem by a Fourier expansion in the angular variable to a countable family of two-dimensional problems. We decompose the meridian domain, assumed polygonal, in a finite number of rectangles and we discretize by a spectral method. Then we describe the main features of the mortar method and use the algorithm Strang Fix to improve the accuracy of our discretization.
@article{M2AN_2013__47_1_33_0, author = {Mani Aouadi, Saloua and Satouri, Jamil}, title = {Mortar spectral method in axisymmetric domains}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {47}, year = {2013}, pages = {33-55}, doi = {10.1051/m2an/2012018}, mrnumber = {2968694}, zbl = {1277.65101}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2013__47_1_33_0} }
Mani Aouadi, Saloua; Satouri, Jamil. Mortar spectral method in axisymmetric domains. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 47 (2013) pp. 33-55. doi : 10.1051/m2an/2012018. http://gdmltest.u-ga.fr/item/M2AN_2013__47_1_33_0/
[1] Mortaring the two-dimensional edge finite elements for the discretization of some electromagnetic models. Math. Mod. Methods Appl. Sci. 14 (2004) 1635-1656. | MR 2103094 | Zbl 1100.78017
, , and ,[2] Spectral Methods for Axisymetric Domains. Series in Appl. Math. 3 (1999). | Zbl 0929.35001
, , and ,[3] Numerical analysis of a model for an axisymmetric guide for electromagnetic waves. Part I : The continuous problem and its Fourier expansion. Math. Meth. Appl. Sci. 28 (2005) 2007-2029. | MR 2176904 | Zbl 1125.35099
, and ,[4] Properties of some weighted Sobolev spaces and application to spectral approximations. SIAM J. Numer. Anal. 26 (1989) 769-829. | MR 1005511 | Zbl 0675.65114
and ,[5] Approximations spectrales de problèmes aux limites elliptiques. Math. Appl. 10 (1992). | Zbl 0773.47032
and ,[6] Numerical Analysis and Spectral Methods in Axisymetric Problems. Rapport Interne, Laboratoire d'Analyse Numérique, Université Pierre et Marie Curie (1995).
, and ,[7] The Mortar method in the wavelet context. Model. Math. Anal. Numer. 35 (2001) 647-673. | Numdam | MR 1862873 | Zbl 0995.65131
, and ,[8] Analyse fonctionnelle, in Théorie et Applications. Masson, Paris (1983). | MR 697382 | Zbl 1147.46300
,[9] Traitement de singularités géométriques par méthode d'éléments spectraux avec joints. Thèse de l'Université Pierre et Marie Curie, Paris VI (1998).
,[10] Elliptic Boundary Value Problems on Corner Domains. Lect. Notes Math. 1341 (1988). | MR 961439 | Zbl 0668.35001
,[11] Finite Element Methods for Navier-Stokes Equations, in Theory and Algorithms. Springer-Verlag (1986). | MR 851383 | Zbl 0585.65077
and ,[12] Singularities in boundary value problems, in Collect. RMA 22 (1992). | MR 1173209 | Zbl 0766.35001
,[13] Domain decomposition methods in computational mechanics, in Comput. Mech. Adv. North-Holland (1994). | MR 1263805 | Zbl 0802.73079
,[14] Overlapping Schwarz methods for Fekete and Gauss-Lobatto spectral elements. SIAM J. Scient. Comput. 29 (2007) 1073-1092. | MR 2318698 | Zbl 1141.65394
, , and ,[15] Nonconforming mortar element methods : application to spectral discretizations, in Domain decomposition methods. SIAM (1989) 392-418. | MR 992030 | Zbl 0692.65055
, and ,[16] Méthodes d'éléments spectraux avec joints pour des géométries axisymétriques. Thèse de l'Université Pierre et Marie Curie, Paris VI (2010).
,[17] An Analysis of the Finite Element Method, in Automatic Computation. Prentice Hall Serie (1973). | MR 443377 | Zbl 0356.65096
and ,