We prove error estimates for the ultra weak variational formulation (UWVF) in 3D linear elasticity. We show that the UWVF of Navier's equation can be derived as an upwind discontinuous Galerkin method. Using this observation, error estimates are investigated applying techniques from the theory of discontinuous Galerkin methods. In particular, we derive a basic error estimate for the UWVF in a discontinuous Galerkin type norm and then an error estimate in the L2(Ω) norm in terms of the best approximation error. Our final result is an L2(Ω) norm error estimate using approximation properties of plane waves to give an estimate for the order of convergence. Numerical examples are presented.
@article{M2AN_2013__47_1_183_0, author = {Luostari, Teemu and Huttunen, Tomi and Monk, Peter}, title = {Error estimates for the ultra weak variational formulation in linear elasticity}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {47}, year = {2013}, pages = {183-211}, doi = {10.1051/m2an/2012025}, mrnumber = {2979514}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2013__47_1_183_0} }
Luostari, Teemu; Huttunen, Tomi; Monk, Peter. Error estimates for the ultra weak variational formulation in linear elasticity. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 47 (2013) pp. 183-211. doi : 10.1051/m2an/2012025. http://gdmltest.u-ga.fr/item/M2AN_2013__47_1_183_0/
[1] Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 1749-1779. | MR 1885715 | Zbl 1008.65080
, , and ,[2] An exponentially convergent nonpolynomial finite element method for time-harmonic scattering from polygons. SIAM J. Sci. Comput. 32 (2010) 1417-1441. | MR 2652084 | Zbl 1216.65151
and ,[3] The mathematical theory of finite element methods, 3rd edition. Springer (2008). | MR 2373954 | Zbl 1012.65115
and ,[4] Error estimates for the ultra weak variational formulation of the Helmholtz equation. ESAIM : M2AN 42 (2008) 925-940. | Numdam | MR 2473314 | Zbl 1155.65094
and ,[5] Application d'une nouvelle formulation variationnelle aux équations d'ondes harmoniques. Problèmes de Helmholtz 2D et de Maxwell 3D. Ph.D. thesis, Université Paris IX Dauphine (1996).
,[6] Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem. SIAM J. Numer. Anal. 35 (1998) 255-299. | MR 1618464 | Zbl 0955.65081
and ,[7] Sharp regularity coefficient estimates for complex-valued acoustic and elastic Helmholtz equations. Math. Mod. Methods Appl. Sci. 16 (2006) 139-160. | MR 2194984 | Zbl 1134.35317
and ,[8] Numerical modeling of elastic wave scattering in frequency domain by partition of unity finite element method. Int. J. Numer. Methods Eng. 77 (2009) 1646-1669. | MR 2502292 | Zbl 1158.74485
and ,[9] A discontinuous enrichment method. Comput. Methods Appl. Mech. Eng. 190 (2001) 6455-6479. | MR 1870426 | Zbl 1002.76065
, and ,[10] A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime. Comput. Methods Appl. Mech. Eng. 192 (2003) 1389-1429. | MR 1963058 | Zbl 1027.76028
, and ,[11] Discontinuous Galerkin methods with plane waves for time-harmonic problems. J. Comput. Phys. 225 (2007) 1961-1984. | MR 2349691 | Zbl 1123.65102
,[12] Spherical coverings. Available on http://www.research.att.com/˜njas/coverings/index.html (1994).
, and ,[13] Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation : analysis of the p-version. SIAM J. Numer. Anal. 49 (2011) 264-284. | MR 2783225 | Zbl 1229.65215
, and ,[14] Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell equations. Math. Comput. In press. | Zbl 1269.78013
, and ,[15] Computational aspects of the ultra-weak variational formulation. J. Comput. Phys. 182 (2002) 27-46. | MR 1936802 | Zbl 1015.65064
, and ,[16] The ultra weak variational formulation for elastic wave problems. SIAM J. Sci. Comput. 25 (2004) 1717-1742. | MR 2087333 | Zbl 1093.74028
, , and ,[17] The perfectly matched layer for the ultra weak variational formulation of the 3D Helmholtz equation. Int. J. Numer. Methods Eng. 61 (2004) 1072-1092. | MR 2094680 | Zbl 1075.76648
, and ,[18] Solving Maxwell's equations using the ultra weak variational formulation. J. Comput. Phys. 223 (2007) 731-758. | MR 2319231 | Zbl 1117.78011
, and ,[19] An ultra-weak method for acoustic fluid-solid interaction. J. Comput. Appl. Math. 213 (2008) 1667-1685. | MR 2382712 | Zbl 1182.76949
, and ,[20] Potential methods in the theory of elasticity. Israel Program for Scientific Translations (1965). | MR 223128 | Zbl 0188.56901
,[21] The ultra weak variational formulation for 3D elastic wave problems, in Proc. 20th International Congress on Acoustics, ICA (2010).Available in 2010 on http://www.acoustics.asn.au. | Zbl 1093.74028
, and ,[22] A discontinuous enrichment method for three-dimensional multiscale harmonic wave propagation problems in multi-fluid and fluid-solid media. Int. J. Numer. Methods Eng. 76 (2008) 400-425. | MR 2463186 | Zbl 1195.74292
, and ,[23] The partition of unity finite element method : basic theory and applications. Comput. Methods Appl. Mech. Eng. 139 (1996) 289-314. | MR 1426012 | Zbl 0881.65099
and ,[24] Trefftz-Discontinuous Galerkin Methods for Time-Harmonic Wave Problems. Ph.D. thesis, ETH Zürich (2011).
,[25] Plane wave approximation in linear elasticity. To appear in Appl. Anal. | MR 3197936 | Zbl pre06190758
,[26] Plane wave approximation of homogeneous Helmholtz solutions. Z. Angew. Math. Phys. 65 (2011) 809-837. | MR 2843918 | Zbl 1263.35070
, and ,[27] A least squares method for the Helmholtz equation. Comput. Methods Appl. Mech. Eng. 175 (1999) 121-136. | MR 1692914 | Zbl 0943.65127
and ,[28] Betti's identity and transition matrix for elastic waves. J. Acoust. Soc. Am. 64 (1978) 302-310. | MR 495457 | Zbl 0399.73038
,[29] Plane wave decomposition in the unit disc : convergence estimates and computational aspects. J. Comput. Appl. Math. 193 (2006) 140-156. | MR 2228711 | Zbl 1092.65092
,[30] Extremal systems of points and numerical integration on the sphere. Adv. Comput. Math. 21 (2004) 107-125. | MR 2065291 | Zbl 1055.65038
and ,[31] Overview of the discontinuous enrichment method, the ultra-weak variational formulation, and the partition of unity method for acoustic scattering in the medium frequency regime and performance comparisons. Int. J. Numer. Methods Eng. 89 (2012) 403-417. | MR 2878822 | Zbl 1242.76143
, , and ,[32] Interpolation and cubature on the sphere. Available on http://web.maths.unsw.edu.au/˜rsw/Sphere.
and ,