Error estimates for the ultra weak variational formulation in linear elasticity
Luostari, Teemu ; Huttunen, Tomi ; Monk, Peter
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 47 (2013), p. 183-211 / Harvested from Numdam

We prove error estimates for the ultra weak variational formulation (UWVF) in 3D linear elasticity. We show that the UWVF of Navier's equation can be derived as an upwind discontinuous Galerkin method. Using this observation, error estimates are investigated applying techniques from the theory of discontinuous Galerkin methods. In particular, we derive a basic error estimate for the UWVF in a discontinuous Galerkin type norm and then an error estimate in the L2(Ω) norm in terms of the best approximation error. Our final result is an L2(Ω) norm error estimate using approximation properties of plane waves to give an estimate for the order of convergence. Numerical examples are presented.

Publié le : 2013-01-01
DOI : https://doi.org/10.1051/m2an/2012025
Classification:  65N15,  65N30,  74J05,  74S30
@article{M2AN_2013__47_1_183_0,
     author = {Luostari, Teemu and Huttunen, Tomi and Monk, Peter},
     title = {Error estimates for the ultra weak variational formulation in linear elasticity},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {47},
     year = {2013},
     pages = {183-211},
     doi = {10.1051/m2an/2012025},
     mrnumber = {2979514},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2013__47_1_183_0}
}
Luostari, Teemu; Huttunen, Tomi; Monk, Peter. Error estimates for the ultra weak variational formulation in linear elasticity. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 47 (2013) pp. 183-211. doi : 10.1051/m2an/2012025. http://gdmltest.u-ga.fr/item/M2AN_2013__47_1_183_0/

[1] D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 1749-1779. | MR 1885715 | Zbl 1008.65080

[2] A.H. Barnett and T. Betcke, An exponentially convergent nonpolynomial finite element method for time-harmonic scattering from polygons. SIAM J. Sci. Comput. 32 (2010) 1417-1441. | MR 2652084 | Zbl 1216.65151

[3] S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods, 3rd edition. Springer (2008). | MR 2373954 | Zbl 1012.65115

[4] A. Buffa and P. Monk, Error estimates for the ultra weak variational formulation of the Helmholtz equation. ESAIM : M2AN 42 (2008) 925-940. | Numdam | MR 2473314 | Zbl 1155.65094

[5] O. Cessenat, Application d'une nouvelle formulation variationnelle aux équations d'ondes harmoniques. Problèmes de Helmholtz 2D et de Maxwell 3D. Ph.D. thesis, Université Paris IX Dauphine (1996).

[6] O. Cessenat and B. Després, Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem. SIAM J. Numer. Anal. 35 (1998) 255-299. | MR 1618464 | Zbl 0955.65081

[7] P. Cummings and X. Feng, Sharp regularity coefficient estimates for complex-valued acoustic and elastic Helmholtz equations. Math. Mod. Methods Appl. Sci. 16 (2006) 139-160. | MR 2194984 | Zbl 1134.35317

[8] A. El Kacimi and O. Laghrouche, Numerical modeling of elastic wave scattering in frequency domain by partition of unity finite element method. Int. J. Numer. Methods Eng. 77 (2009) 1646-1669. | MR 2502292 | Zbl 1158.74485

[9] C. Farhat, I. Harari and L.P. Franca, A discontinuous enrichment method. Comput. Methods Appl. Mech. Eng. 190 (2001) 6455-6479. | MR 1870426 | Zbl 1002.76065

[10] C. Farhat, I. Harari and U. Hetmaniuk, A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime. Comput. Methods Appl. Mech. Eng. 192 (2003) 1389-1429. | MR 1963058 | Zbl 1027.76028

[11] G. Gabard, Discontinuous Galerkin methods with plane waves for time-harmonic problems. J. Comput. Phys. 225 (2007) 1961-1984. | MR 2349691 | Zbl 1123.65102

[12] R. Hardin, N. Sloane and W. Smith, Spherical coverings. Available on http://www.research.att.com/˜njas/coverings/index.html (1994).

[13] R. Hiptmair, A. Moiola and I. Perugia, Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation : analysis of the p-version. SIAM J. Numer. Anal. 49 (2011) 264-284. | MR 2783225 | Zbl 1229.65215

[14] R. Hiptmair, A. Moiola and I. Perugia, Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell equations. Math. Comput. In press. | Zbl 1269.78013

[15] T. Huttunen, P. Monk and J.P. Kaipio, Computational aspects of the ultra-weak variational formulation. J. Comput. Phys. 182 (2002) 27-46. | MR 1936802 | Zbl 1015.65064

[16] T. Huttunen, P. Monk, F. Collino and J.P. Kaipio, The ultra weak variational formulation for elastic wave problems. SIAM J. Sci. Comput. 25 (2004) 1717-1742. | MR 2087333 | Zbl 1093.74028

[17] T. Huttunen, P. Monk and J.P. Kaipio, The perfectly matched layer for the ultra weak variational formulation of the 3D Helmholtz equation. Int. J. Numer. Methods Eng. 61 (2004) 1072-1092. | MR 2094680 | Zbl 1075.76648

[18] T. Huttunen, M. Malinen and P. Monk, Solving Maxwell's equations using the ultra weak variational formulation. J. Comput. Phys. 223 (2007) 731-758. | MR 2319231 | Zbl 1117.78011

[19] T. Huttunen, J.P. Kaipio and P. Monk,An ultra-weak method for acoustic fluid-solid interaction. J. Comput. Appl. Math. 213 (2008) 1667-1685. | MR 2382712 | Zbl 1182.76949

[20] V.D. Kupradze, Potential methods in the theory of elasticity. Israel Program for Scientific Translations (1965). | MR 223128 | Zbl 0188.56901

[21] T. Luostari, T. Huttunen and P. Monk, The ultra weak variational formulation for 3D elastic wave problems, in Proc. 20th International Congress on Acoustics, ICA (2010).Available in 2010 on http://www.acoustics.asn.au. | Zbl 1093.74028

[22] P. Massimi, R. Tezaur and C. Farhat, A discontinuous enrichment method for three-dimensional multiscale harmonic wave propagation problems in multi-fluid and fluid-solid media. Int. J. Numer. Methods Eng. 76 (2008) 400-425. | MR 2463186 | Zbl 1195.74292

[23] M.M. Melenk and I. Babuška, The partition of unity finite element method : basic theory and applications. Comput. Methods Appl. Mech. Eng. 139 (1996) 289-314. | MR 1426012 | Zbl 0881.65099

[24] A. Moiola, Trefftz-Discontinuous Galerkin Methods for Time-Harmonic Wave Problems. Ph.D. thesis, ETH Zürich (2011).

[25] A. Moiola, Plane wave approximation in linear elasticity. To appear in Appl. Anal. | MR 3197936 | Zbl pre06190758

[26] A. Moiola, R. Hiptmair and I. Perugia, Plane wave approximation of homogeneous Helmholtz solutions. Z. Angew. Math. Phys. 65 (2011) 809-837. | MR 2843918 | Zbl 1263.35070

[27] P. Monk and D.-Q. Wang, A least squares method for the Helmholtz equation. Comput. Methods Appl. Mech. Eng. 175 (1999) 121-136. | MR 1692914 | Zbl 0943.65127

[28] Y.-H. Pao, Betti's identity and transition matrix for elastic waves. J. Acoust. Soc. Am. 64 (1978) 302-310. | MR 495457 | Zbl 0399.73038

[29] E. Perrey-Debain, Plane wave decomposition in the unit disc : convergence estimates and computational aspects. J. Comput. Appl. Math. 193 (2006) 140-156. | MR 2228711 | Zbl 1092.65092

[30] I. Sloan and R. Womersley, Extremal systems of points and numerical integration on the sphere. Adv. Comput. Math. 21 (2004) 107-125. | MR 2065291 | Zbl 1055.65038

[31] D. Wang, J. Toivanen, R. Tezaur and C. Farhat,Overview of the discontinuous enrichment method, the ultra-weak variational formulation, and the partition of unity method for acoustic scattering in the medium frequency regime and performance comparisons. Int. J. Numer. Methods Eng. 89 (2012) 403-417. | MR 2878822 | Zbl 1242.76143

[32] R. Womersley and I. Sloan, Interpolation and cubature on the sphere. Available on http://web.maths.unsw.edu.au/˜rsw/Sphere.