We prove the discrete compactness property of the edge elements of any order on a class of anisotropically refined meshes on polyhedral domains. The meshes, made up of tetrahedra, have been introduced in [Th. Apel and S. Nicaise, Math. Meth. Appl. Sci. 21 (1998) 519-549]. They are appropriately graded near singular corners and edges of the polyhedron.
@article{M2AN_2013__47_1_169_0, author = {Lombardi, Ariel Luis}, title = {The discrete compactness property for anisotropic edge elements on polyhedral domains}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {47}, year = {2013}, pages = {169-181}, doi = {10.1051/m2an/2012024}, mrnumber = {2979513}, zbl = {1281.78014}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2013__47_1_169_0} }
Lombardi, Ariel Luis. The discrete compactness property for anisotropic edge elements on polyhedral domains. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 47 (2013) pp. 169-181. doi : 10.1051/m2an/2012024. http://gdmltest.u-ga.fr/item/M2AN_2013__47_1_169_0/
[1] The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges, Math. Meth. Appl. Sci. 21 (1998) 519-549. | MR 1615426 | Zbl 0911.65107
and ,[2] Fortin operator and discrete compactness for edge elements. Numer. Math. 87 (2000) 229-246. | MR 1804657 | Zbl 0967.65106
,[3] Finite element approximation of eigenvalue problems. Acta Numer. 19 (2010) 1-120. | MR 2652780 | Zbl 1242.65110
,[4] Algebraic convergence for anisotropic edge elements in polyhedral domains. Numer. Math. 101 (2005) 29-65. | MR 2194717 | Zbl 1116.78020
, and ,[5] On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems, SIAM J. Numer. Anal. 38 (2000) 580-607. | MR 1770063 | Zbl 1005.78012
, and ,[6] Spurious-free approximations of electromagnetic eigenproblems by means of Nedelec-type elements. Math. Model. Numer. Anal. 35 (2001) 331-354. | Numdam | MR 1825702 | Zbl 0993.78016
, and ,[7] Finite Element Methods for Navier-Stokes Equations, in Theory and Applications. Springer-Verlag, Berlin (1986). | MR 851383 | Zbl 0585.65077
and ,[8] Finite elements in computational electromagnetism. Acta Numer. 11 (2002) 237-339. | MR 2009375 | Zbl 1123.78320
,[9] On a discrete compactness property for the Nédélec finite elements. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36 (1989) 479-490. | MR 1039483 | Zbl 0698.65067
,[10] On the maximum angle condition for linear tetrahedral elements. SIAM J. Numer. Anal. 29 (1992) 513-520. | MR 1154279 | Zbl 0755.41003
,[11] Initial Boundary Value Problems in Mathematical Physics. John Wiley, New York (1986). | MR 841971 | Zbl 0599.35001
,[12] Interpolation error estimates for edge elements on anisotropic meshes. IMA J. Numer. Anal. 31 (2011) 1683-1712. | MR 2846771 | Zbl 1229.65196
,[13] Finite Element Methods for Maxwell's Equations. Oxford University Press, New York (2003). | MR 2059447 | Zbl 1024.78009
,[14] Discrete compactness and the approximation of Maxwell's equations in R3. Math. Comp. 70 (2001) 507-523. | MR 1709155 | Zbl 1035.65131
and ,[15] Mixed finite elements in R3. Numer. Math. 35 (1980) 315-341. | Zbl 0419.65069
,[16] Edge elements on anisotropic meshes and approximation of the Maxwell equations. SIAM J. Numer. Anal. 39 (2001) 784-816. | MR 1860445 | Zbl 1001.65122
,[17] A mixed finite element method for second order elliptic problems, in Mathematical Aspects of the Finite Element Method, edited by I. Galligani and E. Magenes. Lect. Notes Math. 606 (1977). | MR 483555 | Zbl 0362.65089
and ,[18] A local compactness theorem for Maxwell's equations. Math. Meth. Appl. Sci. 2 (1980) 12-25. | MR 561375 | Zbl 0432.35032
,