From Kantorovich's theory we present a semilocal convergence result for Newton's method which is based mainly on a modification of the condition required to the second derivative of the operator involved. In particular, instead of requiring that the second derivative is bounded, we demand that it is centered. As a consequence, we obtain a modification of the starting points for Newton's method. We illustrate this study with applications to nonlinear integral equations of mixed Hammerstein type.
@article{M2AN_2013__47_1_149_0, author = {Ezquerro, Jos\'e Antonio and Gonz\'alez, Daniel and Hern\'andez, Miguel \'Angel}, title = {A general semilocal convergence result for Newton's method under centered conditions for the second derivative}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {47}, year = {2013}, pages = {149-167}, doi = {10.1051/m2an/2012026}, mrnumber = {2968699}, zbl = {1271.65092}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2013__47_1_149_0} }
Ezquerro, José Antonio; González, Daniel; Hernández, Miguel Ángel. A general semilocal convergence result for Newton's method under centered conditions for the second derivative. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 47 (2013) pp. 149-167. doi : 10.1051/m2an/2012026. http://gdmltest.u-ga.fr/item/M2AN_2013__47_1_149_0/
[1] Third-order iterative methods under Kantorovich conditions. J. Math. Anal. Appl. 336 (2007) 243-261. | MR 2348504 | Zbl 1128.65036
and ,[2] A family of Halley-Chebyshev iterative schemes for non-Fréechet differentiable operators. J. Comput. Appl. Math. 228 (2009) 486-493. | MR 2514306 | Zbl 1173.65036
, , and ,[3] A Newton-Kantorovich theorem for equations involving m-Fréchet differentiable operators and applications in radiative transfer. J. Comput. Appl. Math. 131 (2001) 149-159. | MR 1835709 | Zbl 0983.65069
,[4] An improved convergence analysis and applications for Newton-like methods in Banach space, Numer. Funct. Anal. Optim. 24 (2003) 653-572. | MR 2011587 | Zbl 1040.47045
,[5] On the Newton-Kantorovich hypothesis for solving equations. J. Comput. Appl. Math. 169 (2004) 315-332. | MR 2072881 | Zbl 1055.65066
,[6] Nonlinear feedback control for operating a nonisothermal CSTR near an unstable steady state. Chem. Eng. Sci. 32 (1977) 257-264.
and ,[7] Nonlinear functional analysis. Springer-Verlag, Berlin (1985). | MR 787404 | Zbl 0559.47040
,[8] Generalized differentiability conditions for Newton's method. IMA J. Numer. Anal. 22 (2002) 187-205. | MR 1897406 | Zbl 1006.65051
and ,[9] On an application of Newton's method to nonlinear operators with ω-conditioned second derivative. BIT 42 (2002) 519-530. | MR 1931884 | Zbl 1028.65061
and ,[10] Halley's method for operators with unbounded second derivative. Appl. Numer. Math. 57 (2007) 354-360. | MR 2292441 | Zbl 1252.65098
and ,[11] Majorizing sequences for Newton's method from initial value problems. J. Comput. Appl. Math. (submitted). | Zbl 1241.65051
, and ,[12] Numerical solvability of Hammerstein integral equations of mixed type. IMA J. Numer. Anal. 11 (1991) 21-31. | MR 1089546 | Zbl 0719.65093
and ,[13] A new semilocal convergence theorem for Newton's method. J. Comput. Appl. Math. 79 (1997) 131-145. | MR 1437974 | Zbl 0872.65045
,[14] On Newton's method for functional equations. Dokl Akad. Nauk SSSR 59 (1948) 1237-1240 (in Russian).
,[15] The majorant principle and Newton's method. Dokl. Akad. Nauk SSSR 76 (1951) 17-20 (in Russian).
,[16] Functional analysis. Pergamon Press, Oxford (1982). | MR 664597 | Zbl 0484.46003
and ,[17] Solution of equations in Euclidean and Banach spaces. London, Academic Press (1943). | MR 359306 | Zbl 0304.65002
,[18] Sharp error bounds for Newton process. Numer. Math. 34 (1980) 63-72. | MR 560794 | Zbl 0434.65034
and ,[19] New approach for numerical solution of Hammerstein integral equations. Appl. Math. Comput. 185 (2007) 147-154. | MR 2298437 | Zbl 1110.65126
and ,[20] A unified convergence theory for a class of iterative processes. SIAM J. Numer. Anal. 5 (1968) 42-63. | MR 225468 | Zbl 0155.46701
,[21] Convergence theorem for Newton-like methods in Banach spaces. Numer. Math. 51 (1987) 545-557. | MR 910864 | Zbl 0633.65049
,[22] A note on weaker convergence conditions for Newton iteration. J. Zhejiang Univ. Sci. Ed. 30 (2003) 133-135, 144 (in Chinese). | MR 1973328 | Zbl 1043.65075
,