Electromagnetic scattering at composite objects : a novel multi-trace boundary integral formulation
Claeys, Xavier ; Hiptmair, Ralf
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 46 (2012), p. 1421-1445 / Harvested from Numdam

Since matrix compression has paved the way for discretizing the boundary integral equation formulations of electromagnetics scattering on very fine meshes, preconditioners for the resulting linear systems have become key to efficient simulations. Operator preconditioning based on Calderón identities has proved to be a powerful device for devising preconditioners. However, this is not possible for the usual first-kind boundary formulations for electromagnetic scattering at general penetrable composite obstacles. We propose a new first-kind boundary integral equation formulation following the reasoning employed in [X. Clayes and R. Hiptmair, Report 2011-45, SAM, ETH Zürich (2011)] for acoustic scattering. We call it multi-trace formulation, because its unknowns are two pairs of traces on interfaces in the interior of the scatterer. We give a comprehensive analysis culminating in a proof of coercivity, and uniqueness and existence of solution. We establish a Calderón identity for the multi-trace formulation, which forms the foundation for operator preconditioning in the case of conforming Galerkin boundary element discretization.

Publié le : 2012-01-01
DOI : https://doi.org/10.1051/m2an/2012011
Classification:  78A45,  35A35,  35Q60,  78M15
@article{M2AN_2012__46_6_1421_0,
     author = {Claeys, Xavier and Hiptmair, Ralf},
     title = {Electromagnetic scattering at composite objects : a novel multi-trace boundary integral formulation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {46},
     year = {2012},
     pages = {1421-1445},
     doi = {10.1051/m2an/2012011},
     mrnumber = {2996334},
     zbl = {1277.78032},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2012__46_6_1421_0}
}
Claeys, Xavier; Hiptmair, Ralf. Electromagnetic scattering at composite objects : a novel multi-trace boundary integral formulation. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 46 (2012) pp. 1421-1445. doi : 10.1051/m2an/2012011. http://gdmltest.u-ga.fr/item/M2AN_2012__46_6_1421_0/

[1] F.P. Andriulli, K. Cools, H. Bagci, F. Olyslager, A. Buffa, S. Christiansen and E. Michielssen, A multiplicative Calderon preconditioner for the electric field integral equation. IEEE Trans. Antennas Propag. 56 (2008) 2398-2412. | MR 2444900

[2] H. Bagci, F.P. Andriulli, K. Coolst, F. Olyslager and E. Michielssen, A Calderón multiplicative preconditioner for the combined field integral equation. IEEE Trans. Antennas Propag. 57 (2009) 3387-3392. | MR 2571894

[3] A. Bendali, Numerical analysis of the exterior boundary value problem for time harmonic Maxwell equations by a boundary finite element method. Part 2 : The discrete problem. Math. Comput. 43 (1984) 47-68. | MR 744924 | Zbl 0555.65083

[4] A. Bendali, M.B. Fares and J. Gay, A boundary-element solution of the Leontovitch problem. IEEE Trans. Antennas Propag. 47 (1999) 1597-1605. | MR 1732859 | Zbl 0949.78017

[5] Y. Boubendir, A. Bendali and M.B. Fares, Coupling of a non-overlapping domain decomposition method for a nodal finite element method with a boundary element method. Int. J. Numer. Methods Eng. 73 (2008) 1624-1650. | MR 2396903 | Zbl 1175.78026

[6] A. Buffa, Remarks on the discretization of some noncoercive operator with applications to the heterogeneous Maxwell equations. SIAM J. Numer. Anal. 43 (2005) 1-18. | MR 2177953 | Zbl 1128.78010

[7] A. Buffa and S.H. Christiansen, A dual finite element complex on the barycentric refinement. Math. Comput. 76 (2007) 1743-1769. | MR 2336266 | Zbl 1130.65108

[8] A. Buffa and P. Ciarlet Jr., On traces for functional spaces related to Maxwell's equations I. An integration by parts formula in Lipschitz polyhedra. Math. Methods Appl. Sci. 24 (2001) 9-30. | MR 1809491 | Zbl 0998.46012

[9] A. Buffa and P. Ciarlet Jr., On traces for functional spaces related to Maxwell's equations II. Hodge decompositions on the boundary of Lipschitz polyhedra and applications. Math. Methods Appl. Sci. 24 (2001) 31-48. | MR 1809492 | Zbl 0976.46023

[10] A. Buffa and R. Hiptmair, Galerkin boundary element methods for electromagnetic scattering, in Topics in computational wave propagation. Lect. Notes Comput. Sci. Eng. 31 (2003) 83-124. | MR 2032868 | Zbl 1055.78013

[11] A. Buffa, M. Costabel and C. Schwab, Boundary element methods for Maxwell's equations on non-smooth domains. Numer. Math. 92 (2002) 679-710. | MR 1935806 | Zbl 1019.65094

[12] A. Buffa, M. Costabel and D. Sheen, On traces for H(curl,Ω) in Lipschitz domains. J. Math. Anal. Appl. 276 (2002) 845-867. | MR 1944792 | Zbl 1106.35304

[13] A. Buffa, R. Hiptmair, T. Von Petersdorff and C. Schwab, Boundary element methods for Maxwell transmission problems in Lipschitz domains. Numer. Math. 95 (2003) 459-485. | MR 2012928 | Zbl 1071.65160

[14] Y. Chang and R. Harrington, A surface formulation or characteristic modes of material bodies. IEEE Trans. Antennas Propag. 25 (1977) 789-795.

[15] S.H. Christiansen, Discrete Fredholm properties and convergence estimates for the electric field integral equation. Math. Comput. 73 (2004) 143-167. | MR 2034114 | Zbl 1034.65089

[16] S.H. Christiansen and J.-C. Nédélec, Des préconditionneurs pour la résolution numérique des équations intégrales de frontière de l'acoustique. C. R. Acad. Sci. Paris, Sér. I Math. 330 (2000) 617-622. | Zbl 0952.65096

[17] S.H. Christiansen and J.-C. Nédélec, A preconditioner for the electric field integral equation based on Calderón formulas. SIAM J. Numer. Anal. 40 (2002) 1100-1135. | MR 1949407 | Zbl 1021.78010

[18] X. Claeys, A single trace integral formulation of the second kind for acoustic scattering. Seminar of Applied Mathematics, ETH Zürich, Technical Report 2011-14. Submitted to J. Appl. Math. (2011).

[19] X. Claeys and R. Hiptmair, Boundary integral formulation of the first kind for acoustic scattering by composite structures. Report 2011-45, SAM, ETH Zürich (2011)

[20] D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, 2nd edition. Appl. Math. Sci. 93 (1998). | MR 1635980 | Zbl 0893.35138

[21] K. Coolst, F.P. Andriulli and F. Olyslager, A Calderón, preconditioned PMCHWT equation, in Proc. of the International Conference on Electromagnetics in Advanced Applications, ICEAA'09. Torino, Italy (2009) 521-524.

[22] M. Costabel, Boundary integral operators on Lipschitz domains : elementary results. SIAM J. Math. Anal. 19 (1988) 613-626. | MR 937473 | Zbl 0644.35037

[23] R. Hiptmair, Finite elements in computational electromagnetism. Acta Numer. 11 (2002) 237-339. | MR 2009375 | Zbl 1123.78320

[24] R. Hiptmair, Coupling of finite elements and boundary elements in electromagnetic scattering. SIAM J. Numer. Anal. 41 (2003) 919-944. | MR 2005188 | Zbl 1049.78021

[25] R. Hiptmair, Operator preconditioning. Comput. Math. Appl. 52 (2006) 699-706. | MR 2275559 | Zbl 1125.65037

[26] R. Hiptmair and C. Jerez-Hanckes, Multiple traces boundary integral formulation for Helmholtz transmission problems. SAM, ETH Zürich, Report 2010-35 (2010). | Zbl 1261.65123

[27] R. Hiptmair and C. Schwab, Natural boundary element methods for the electric field integral equation on polyhedra. SIAM J. Numer. Anal. 40 (2002) 66-86. | MR 1921910 | Zbl 1010.78014

[28] G.C. Hsiao, O. Steinbach and W.L. Wendland, Domain decomposition methods via boundary integral equations, Numerical Analysis VI, Ordinary differential equations and integral equations. J. Comput. Appl. Math. 125 (2000) 521-537. | MR 1803211 | Zbl 0971.65111

[29] S. Jäärvenpä, S.P. Kiminki and P. Ylä-Oijala, Calderon preconditioned surface integral equations for composite objects with junctions. IEEE Trans. Antennas Propag. 59 (2011) 546-554. | MR 2797173

[30] U. Langer and O. Steinbach, Boundary element tearing and interconnecting methods. Computing 71 (2003) 205-228. | MR 2023942 | Zbl 1037.65123

[31] W. Mclean, Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge (2000). | MR 1742312 | Zbl 0948.35001

[32] E. Miller and A. Poggio, Computer Techniques for Electromagnetics, in Integral equation solution of three-dimensional scattering problems, Chapter 4, Pergamon, New York (1973) 159-263. | MR 462236

[33] S.M. Rao, D.R. Wilton and A.W. Glisson, Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antennas Propag. 30 (1986) 409-418.

[34] S.A. Sauter and C. Schwab, Boundary element methods, Springer Series in Comput. Math. 39 (2011). | MR 2743235 | Zbl 1215.65183

[35] O. Steinbach and W.L. Wendland, The construction of some efficient preconditioners in the boundary element method. Adv. Comput. Math 9 (1998) 191-216. | MR 1662766 | Zbl 0922.65076

[36] O. Steinbach and M. Windisch, Modified combined field integral equations for electromagnetic scattering. SIAM J. Numer. Anal. 47 (2009) 1149-1167. | MR 2485448 | Zbl 1195.78024

[37] M.B. Stephanson and J.-F. Lee, Preconditioned electric field integral equation using Calderon identities and dual loop/star basis functions. IEEE Trans. Antennas Propag. 57 (2009) 1274-1279.

[38] T. Von Petersdorff, Boundary integral equations for mixed Dirichlet, Neumann and transmission problems. Math. Methods Appl. Sci. 11 (1989) 185-213. | MR 984053 | Zbl 0694.35048

[39] M. Windisch, Boundary element tearing and interconnecting methods for acoustic and electromagnetic scattering. Ph.D. thesis, Graz University of Technology (2010).

[40] T.-K. Wu and L.-L. Tsai, Scattering from arbitrarily-shaped lossy di-electric bodies of revolution. Radio Sci. 12 (1977) 709-718.

[41] S. Yan, J.-M. Jin and Z.-P. Nie, A comparative study of Calderón preconditioners for PMCHWT equations. IEEE Trans. Antennas Propag. 58 (2010) 2375-2383. | MR 2681513