Combined a posteriori modeling-discretization error estimate for elliptic problems with complicated interfaces
Repin, Sergey I. ; Samrowski, Tatiana S. ; Sauter, Stéfan A.
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 46 (2012), p. 1389-1405 / Harvested from Numdam

We consider linear elliptic problems with variable coefficients, which may sharply change values and have a complex behavior in the domain. For these problems, a new combined discretization-modeling strategy is suggested and studied. It uses a sequence of simplified models, approximating the original one with increasing accuracy. Boundary value problems generated by these simplified models are solved numerically, and the approximation and modeling errors are estimated by a posteriori estimates of functional type. An efficient numerical strategy is based upon balancing the modeling and discretization errors, which provides an economical way of finding an approximate solution with an a priori given accuracy. Numerical tests demonstrate the reliability and efficiency of this combined modeling-discretization method.

Publié le : 2012-01-01
DOI : https://doi.org/10.1051/m2an/2012007
Classification:  35J15,  65N15,  65N30
@article{M2AN_2012__46_6_1389_0,
     author = {Repin, Sergey I. and Samrowski, Tatiana S. and Sauter, St\'efan A.},
     title = {Combined a posteriori modeling-discretization error estimate for elliptic problems with complicated interfaces},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {46},
     year = {2012},
     pages = {1389-1405},
     doi = {10.1051/m2an/2012007},
     zbl = {1281.65144},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2012__46_6_1389_0}
}
Repin, Sergey I.; Samrowski, Tatiana S.; Sauter, Stéfan A. Combined a posteriori modeling-discretization error estimate for elliptic problems with complicated interfaces. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 46 (2012) pp. 1389-1405. doi : 10.1051/m2an/2012007. http://gdmltest.u-ga.fr/item/M2AN_2012__46_6_1389_0/

[1] M. Ainsworth, A posteriori error estimation for fully discrete hierarchic models of elliptic boundary value problems on thin domains. Numer. Math. 80 (1998) 325-362. | MR 1648883 | Zbl 0912.65087

[2] M. Ainsworth and A. Arnold, A reliable a posteriori error estimator for adaptive hierarchic modeling, in Adv. Adap. Comp. Meth. Mech., edited by P. Ladevéze and J.T. Oden (1998) 101-114.

[3] M. Ainsworth and J.T. Oden, A Posteriori Error Estimation in Finite Element Analysis. Wiley (2000). | MR 1885308 | Zbl 1008.65076

[4] I. Babuška and W.C. Rheinboldt, A posteriori error estimates for the finite element method. Int. J. Numer. Math. Eng. 12 (1978) 1597-1615. | Zbl 0396.65068

[5] I. Babuška and W.C. Rheinboldt, Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15 (1978) 736-754. | MR 483395 | Zbl 0398.65069

[6] I. Babuška and R. Rodríguez, The problem of the selection of an a posteriori error indicator based on smoothing techniques. Int. J. Numer. Methods Eng. 36 (1993) 539-567. | Zbl 0770.65065

[7] I. Babuška and C. Schwab, A posteriori error estimation for hierarchic models of elliptic boundary value problems on thin domains. SIAM J. Numer. Anal. 33 (1996) 221-246. | MR 1377252 | Zbl 0846.65056

[8] A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures. Amsterdam, North-Holland (1978). | MR 503330 | Zbl 0404.35001

[9] D. Braess, Finite elements : Theory, Fast Solvers and Application in Solid Mechanics. Cambridge University Press (2007). | Zbl 1118.65117

[10] D. Braess, An a posteriori error estimate and a comparison theorem for the nonconforming P1 element. Calcolo 46 (2009) 149-155. | MR 2520373 | Zbl 1192.65142

[11] D. Braess and J. Schöberl, Equilibrated residual error estimator for edge elements. Math. Comp. 77 (2008) 651-672. | MR 2373174 | Zbl 1135.65041

[12] C. Carstensen and S. Sauter, A posteriori error analysis for elliptic PDEs on domains with complicated structures. Numer. Math. 96 (2004) 691-721. | MR 2036362 | Zbl 1049.65120

[13] M. Chipot, Elliptic Equations : An Introductory Course. Birkhäuser Verlag AG (2009). | MR 2494977 | Zbl 1171.35003

[14] Ph. Clément, Approximations by finite element functions using local regularization. RAIRO Anal. Numer. 9 (1975) 77-84. | Numdam | Zbl 0368.65008

[15] W. Dörfler, M. Rumpf, An adaptive strategy for elliptic problems including a posteriori controlled boundary approximation. Math. Comp. 67 1361-1382 (1998). | MR 1489969 | Zbl 0904.65105

[16] V.V. Jikov, S.M. Kozlov and O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals. Springer, Berlin (1994). | MR 1329546 | Zbl 0801.35001

[17] P. Jiranek, Z. Strakos and M. Vohralik, A posteriori error estimates including algebraic error : computable upper bounds and stopping criteria for iterative solvers, SIAM J. Sci. Comput. 32 (2010) 1567-1590. | MR 2652091 | Zbl 1215.65168

[18] P. Neittaanmäki and S.I. Repin, Reliable Methods for Computer Simulation. Error Control and A Posteriori Estimates. Elsevier, New York (2004). | MR 2095603 | Zbl 1076.65093

[19] S. Repin, A posteriori error estimation for nonlinear variational problems by duality theory. Zapiski Nauch. Semin. (POMI) 243 (1997) 201-214. | MR 1629741 | Zbl 0904.65064

[20] S. Repin, A posteriori error estimation for variational problems with uniformly convex functionals. Math. Comp. 69 (2000) 481-500. | MR 1681096 | Zbl 0949.65070

[21] S. Repin, Two-sided estimates of deviation from exact solutions of uniformly elliptic equations, Proc. of the St. Petersburg Mathematical Society IX, Amer. Math. Soc. Transl. Ser. 2. Amer. Math. Soc., Providence, RI 209 (2003) 143-171. | MR 2018375 | Zbl 1039.65076

[22] S. Repin, A Posteriori Error Estimates For Partial Differential Equations. Walter de Gruyter, Berlin (2008). | Zbl 1162.65001

[23] S. Repin and S. Sauter, Functional a posteriori estimates for the reaction-diffusion problem. C. R. Math. Acad. Sci. Paris 343 (2006) 349-354. | MR 2253056 | Zbl 1100.65093

[24] S. Repin and S. Sauter, Computable estimates of the modeling error related to Kirchhoff-Love plate model. Anal. Appl. 8 (2010) 1-20. | MR 2726072 | Zbl 1200.35299

[25] S. Repin and J. Valdman, Functional a posteriori error estimates for problems with nonlinear boundary conditions. J. Numer. Math. 16 (2008) 51-81. | MR 2396672 | Zbl 1146.65054

[26] S. Repin, S. Sauter and A. Smolianski, A posteriori error estimation for the Dirichlet problem with account of the error in the approximation of boundary conditions. Computing 70 (2003) 205-233. | MR 2011610 | Zbl 1128.35319

[27] S. Repin, S. Sauter and A. Smolianski, Duality based a posteriori error estimator for the Dirichlet problem. Proc. Appl. Math. Mech. 2 (2003) 513-514. | Zbl 1201.65174

[28] S. Repin, S. Sauter and A. Smolianski, A posteriori estimation of dimension reduction errors for elliptic problems in thin domains. SIAM J. Numer. Anal. 42 (2004) 1435-1451. | MR 2114285 | Zbl 1073.35072

[29] S. Repin, S. Sauter and A. Smolianski, A posteriori control of dimension reduction errors on long domains. Proc. Appl. Math. Mech. 4 (2004) 714-715.

[30] S. Repin, S. Sauter and A. Smolianski, A posteriori error estimation for the Poisson equation with mixed Dirichlet/Neumann boundary conditions. J. Comput. Appl. Math. 164-165 (2004) 601-612. | MR 2056902 | Zbl 1038.65114

[31] S. Repin, S. Sauter and A. Smolianski, Two-sided a posteriori error estimates for mixed formulations of elliptic problems. SIAM J. Numer. Anal. 45 (2007) 928-945. | MR 2318795 | Zbl 1185.35048

[32] C. Schwab, A posteriori modeling error estimation for hierarchic plate model. Numer. Math. 74 (1996) 221-259. | MR 1403898 | Zbl 0856.73031

[33] R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Amsterdam (1996). | Zbl 0853.65108

[34] J. Valdman, Minimization of functional majorant in a posteriori error analysis based on H(div) multigrid-preconditioned CG method. Adv. Numer. Math., Advances Numer. Anal. (2009) 164519. | MR 2739760 | Zbl 1200.65095

[35] M. Vogelius and I. Babuška, On a dimensional reduction method I. The optimal selection of basis functions. Math. Comput. 37 (1981) 31-46. | MR 616358 | Zbl 0495.65049