In this paper, we construct and analyze finite element methods for the three dimensional Monge-Ampère equation. We derive methods using the Lagrange finite element space such that the resulting discrete linearizations are symmetric and stable. With this in hand, we then prove the well-posedness of the method, as well as derive quasi-optimal error estimates. We also present some numerical experiments that back up the theoretical findings.
@article{M2AN_2012__46_5_979_0, author = {Brenner, Susanne Cecelia and Neilan, Michael}, title = {Finite element approximations of the three dimensional Monge-Amp\`ere equation}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {46}, year = {2012}, pages = {979-1001}, doi = {10.1051/m2an/2011067}, mrnumber = {2916369}, zbl = {1272.65088}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2012__46_5_979_0} }
Brenner, Susanne Cecelia; Neilan, Michael. Finite element approximations of the three dimensional Monge-Ampère equation. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 46 (2012) pp. 979-1001. doi : 10.1051/m2an/2011067. http://gdmltest.u-ga.fr/item/M2AN_2012__46_5_979_0/
[1] Convergence of approximation schemes for fully nonlinear second order equtions. Asymptotic Anal. 4 (1991) 271-283. | MR 1115933 | Zbl 0729.65077
and ,[2] Optimal finite element interpolation on curved domains. SIAM J. Numer. Anal. 26 (1989) 1212-1240. | MR 1014883 | Zbl 0678.65003
,[3] On finite element methods for fully nonlinear elliptic equations of second order. SIAM J. Numer. Anal. 46 (2008) 1212-1249. | MR 2390991 | Zbl 1166.35322
,[4] The Mathematical Theory of Finite Element Methods, 3th edition. Springer (2008). | MR 2373954 | Zbl 1012.65115
and ,[5] S.C. Brenner, T. Gudi, M. Neilan and L.-Y. Sung, 𝒞0 penalty methods for the fully nonlinear Monge-Ampère equation. Math. Comput. 80 (2011) 1979-1995. | MR 2813346 | Zbl 1228.65220
[6] Properties of the solutions of the linearized Monge-Ampère equation. Amer. J. Math. 119 (1997) 423-465. | MR 1439555 | Zbl 0878.35039
and ,[7] Monge-Ampère Equation : Applications to Geometry and Optimization. Amer. Math. Soc. Providence, RI (1999). | MR 1660738 | Zbl 0903.00039
and ,[8] The Dirichlet problem for nonlinear second-order elliptic equations I. Monge-Ampère equation. Comm. Pure Appl. Math. 37 (1984) 369-402. | MR 739925 | Zbl 0598.35047
, and ,[9] The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). | MR 520174 | Zbl 0511.65078
,[10] User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27 (1992) 1-67. | MR 1118699 | Zbl 0755.35015
, and ,[11] Numerical methods for fully nonlinear elliptic equations of the Monge-Ampère type. Comput. Methods Appl. Mech. Engrg. 195 (2006) 1344-1386. | MR 2203972 | Zbl 1119.65116
and ,[12] An optimal robust equidistribution method for two-dimensional grid adaptation based on Monge-Kantorovich optimization. J. Comput. Phys. 227 (2008) 9841-9864. | MR 2469037 | Zbl 1155.65394
, , , and ,[13] Partial Differential Equations, Graduate Studies in Mathematics. Providence, RI. Amer. Math. Soc. 19 (1998). | Zbl 0902.35002
,[14] Vanishing moment method and moment solutions for second order fully nonlinear partial differential equations. J. Sci. Comput. 38 (2009) 74-98. | MR 2472219 | Zbl 1203.65252
and ,[15] Mixed finite element methods for the fully nonlinear Monge-Ampère equation based on the vanishing moment method. SIAM J. Numer. Anal. 47 (2009) 1226-1250. | MR 2485451 | Zbl 1195.65170
and ,[16] Convergent finite difference solvers for viscosity solutions of the ellptic Monge-Ampère equation in dimensions two and higher. SIAM J. Numer. Anal. 49 (2011) 1692-1714. | MR 2831067 | Zbl 1255.65195
and ,[17] Fast finite difference solvers for singular solutions of the elliptic Monge-Ampère equation. J. Comput. Phys. 230 (2011) 818-834. | MR 2745457 | Zbl 1206.65242
and ,[18] Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin (2001). | MR 1814364 | Zbl 0562.35001
and ,[19] Elliptic Problems on Nonsmooth Domains. Pitman Publishing Inc. (1985). | MR 775683 | Zbl 0695.35060
,[20] The Monge-Ampère Equation, Progress in Nonlinear Differential Equations and Their Applications 44. Birkhauser, Boston, MA (2001). | Zbl 0989.35052
,[21] A Treatise on the Theory of Determinants. Dover Publications Inc., New York (1960). | JFM 15.0118.05 | MR 114826
,[22] A nonconforming Morley finite element method for the fully nonlinear Monge-Ampère equation. Numer. Math. 115 (2010) 371-394. | MR 2640051 | Zbl 1201.65209
,[23] A unified analysis of some finite element methods for the Monge-Ampère equation. Submitted. | Zbl pre06366306
,[24] Über ein Variationspirinzip zur Lösung Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unteworfen sind. Abh. Math. Sem. Univ. Hamburg 36 (1971) 9-15. | MR 341903 | Zbl 0229.65079
,[25] Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian. Discrete Contin. Dyn. Syst. Ser. B 10 (2008) 221-238. | MR 2399429 | Zbl 1145.65085
,[26] A quadratically constrained minimization problem arising from PDE of Monge-Ampère type. Numer. Algorithm 53 (2010) 53-66. | MR 2566127 | Zbl 1187.65073
and ,[27] The Monge-Ampère equation and its geometric applications, Handbook of Geometric Analysis I. International Press (2008) 467-524. | MR 2483373 | Zbl 1156.35033
and ,[28] Topics in Optimal Transportation, Graduate Studies in Mathematics. Providence, RI. Amer. Math. Soc. 58 (2003). | MR 1964483 | Zbl 1106.90001
,[29] Polynomial approximation on tetrahedrons in the finite element method. J. Approx. Theory 7 (1973) 334-351. | MR 350260 | Zbl 0279.41005
,[30] The Monge-Ampère equation : various forms and numerical solutions. J. Comput. Phys. 229 (2010) 5043-5061. | MR 2643642 | Zbl 1194.65141
, and ,