In this paper we study the temporal convergence of a locally implicit discontinuous Galerkin method for the time-domain Maxwell's equations modeling electromagnetic waves propagation. Particularly, we wonder whether the method retains its second-order ordinary differential equation (ODE) convergence under stable simultaneous space-time grid refinement towards the true partial differential equation (PDE) solution. This is not a priori clear due to the component splitting which can introduce order reduction
@article{M2AN_2012__46_5_1225_0, author = {Moya, Ludovic}, title = {Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell's equations}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {46}, year = {2012}, pages = {1225-1246}, doi = {10.1051/m2an/2012002}, mrnumber = {2916379}, zbl = {1277.78036}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2012__46_5_1225_0} }
Moya, Ludovic. Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell's equations. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 46 (2012) pp. 1225-1246. doi : 10.1051/m2an/2012002. http://gdmltest.u-ga.fr/item/M2AN_2012__46_5_1225_0/
[1] Numerical integration of damped maxwell equations. SIAM J. Sci. Comput. 31 (2009) 1322-1346. | MR 2486832 | Zbl 1229.78026
and ,[2] Discontinuous Galerkin approximation of the Maxwell eigenproblem. SIAM J. Numer. Anal. 44 (2006) 2198-2226. | MR 2263045 | Zbl pre05202318
and ,[3] An unconditionally stable discontinuous galerkin method for solving the 2-D time-domain Maxwell equations on unstructured triangular meshes. IEEE Trans. Magn. 44 (2008) 1250-1253.
, and ,[4] Discontinuous Galerkin methods. Theory, computation and applications. Springer-Verlag, Berlin (2000) | MR 1842160 | Zbl 0989.76045
, and Eds.,[5] A spatial high order hexahedral discontinuous Galerkin method to solve Maxwell's equations in time-domain. J. Comput. Phys. 217 (2006) 340-363. | MR 2260605 | Zbl 1160.78004
, and ,[6] Energy conserving explicit local time-stepping for second-order wave equations. SIAM J. Sci. Comput. 31 (2009) 1985-2014. | MR 2516141 | Zbl 1195.65131
and ,[7] Locally implicit discontinuous Galerkin method for time domain electromagnetics. J. Comput. Phys. 229 (2010) 512-526. | MR 2565614 | Zbl 1213.78037
, , and ,[8] Development of a hp-like discontinuous Galerkin time-domain method on non-conforming simplicial meshes for electromagnetic wave propagation. Int. J. Numer. Anal. Mod. 6 (2009) 193-216. | MR 2574904 | Zbl 1158.78329
,[9] Richardson-extrapolated sequential splitting and its application. J. Comput. Appl. Math. 234 (2010) 3283-3302. | Zbl 1160.65022
, and ,[10] Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes. ESAIM : M2AN 39 (2005) 1149-1176. | Numdam | MR 2195908 | Zbl 1094.78008
, , and ,[11] Explicit local time stepping methods for Maxwell's equations. J. Comput. Appl. Math. 234 (2010) 3283-3302. | MR 2665386 | Zbl 1210.78026
and ,[12] Solving Ordinary Differential Equations II - Stiff and Differential-Algebraic problems, 2nd edition. Springer-Verlag, Berlin (1996). | MR 1439506 | Zbl 0729.65051
and ,[13] Geometric Numerical Integration, 2nd edition. Springer-Verlag, Berlin (2002). | MR 1904823 | Zbl 0994.65135
, and ,[14] Nodal high-order methods on unstructured grids. I. Time-domain solution of Maxwell's equations. J. Comput. Phys. 181 (2002) 186-221. | MR 1925981 | Zbl 1014.78016
and ,[15] Nodal Discontinuous Galerkin Methods. Springer (2008). | MR 2372235 | Zbl 1134.65068
and ,[16] Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer-Verlag, Berlin (2003). | MR 2002152 | Zbl 1030.65100
and ,[17] The Finite Element Method in Electromagnetics, 2nd edition. Wiley-IEEE Press (2002). | MR 1903357 | Zbl 0823.65124
,[18] Local theory of extrapolation methods. Numer. Algorithm 53 (2010) 321-342 | MR 2600933 | Zbl 1186.65089
,[19] On the numerical integration of ordinary differential equations by symmetric composition methods. SIAM J. Sci. Comput. 16 (1995) 151-168. | MR 1311683 | Zbl 0821.65048
,[20] Dissipative terms and local time-stepping improvements in a spatial high order Discontinuous Galerkin scheme for the time-domain Maxwell's equations. J. Comput. Phys. 227 (2008) 6795-6820. | MR 2435431 | Zbl 1144.78330
, , and ,[21] Mixed finite elements in R3. Numer. Math. 35 (1980) 315-341. | Zbl 0419.65069
,[22] A new dfamily of mixed finite elements in R3. Numer. Math. 50 (1986) 57-81. | Zbl 0625.65107
,[23] Symplectic local time-stepping in non-dissipative DGTD methods applied to wave propagation problem. ESAIM : M2AN 40 (2006) 815-841. | Numdam | MR 2293248 | Zbl 1121.78014
,[24] A new finite volume scheme for solving Maxwell's system. Compel 19 (2000) 913-931. | Zbl 0994.78021
,[25] Fractal decomposition of exponential operators with applications to many-body theories and Monte-Carlo simulations. Phys. Lett. A 146 (1990) 319-323. | MR 1059400
,[26] A high order discontinuous Galerkin method with local time stepping for the Maxwell equations. Int. J. Numer. Model. 22 (2009) 77-103. | Zbl 1156.78012
, , and ,[27] Component splitting for semi-discrete Maxwell equations. BIT Numer. Math. 51 (2011) 427-445. | MR 2806538 | Zbl 1221.65247
,[28] Composition methods, Maxwell's and source term. CWI Technical report (2010); Available at http://oai.cwi.nl/oai/asset/17036/17036A.pdf.
,[29] Unconditionaly stable integration of Maxwell's equations. Linear Algebra Appl. 431 (2009) 300-317. | MR 2528933 | Zbl 1170.78004
and ,[30] Global extrapolation of a first order splitting method. SIAM J. Sci. Stat. Comput. 6 (1985) 771-780. | MR 791198 | Zbl 0592.65060
and ,[31] Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antennas Propag. 14 (1966) 302-307. | Zbl 1155.78304
,[32] Construction of higher order symplectic integrators. Phys. Lett. A 150 (1990) 262-268. | MR 1078768
,