The aim of this paper is to derive a general model for reduced viscous and resistive Magnetohydrodynamics (MHD) and to study its mathematical structure. The model is established for arbitrary density profiles in the poloidal section of the toroidal geometry of Tokamaks. The existence of global weak solutions, on the one hand, and the stability of the fundamental mode around initial data, on the other hand, are investigated.
@article{M2AN_2012__46_5_1081_0, author = {Despr\'es, Bruno and Sart, R\'emy}, title = {Reduced resistive MHD in Tokamaks with general density}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {46}, year = {2012}, pages = {1081-1106}, doi = {10.1051/m2an/2011078}, mrnumber = {2916373}, zbl = {1267.76034}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2012__46_5_1081_0} }
Després, Bruno; Sart, Rémy. Reduced resistive MHD in Tokamaks with general density. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 46 (2012) pp. 1081-1106. doi : 10.1051/m2an/2011078. http://gdmltest.u-ga.fr/item/M2AN_2012__46_5_1081_0/
[1] Numerical Analysis and Optimization : An Introduction to Mathematical Modelling and Numerical Simulation in Numerical Mathematics and Scientific Computation series. Oxford University Press (2007). | MR 2326223 | Zbl 1120.65001
,[2] Nonlinear Magnetohydrodynamics. Cambridge University Press (1992). | MR 1250152
,[3] Numerical simulation and optimal control in plasma physics, with application to Tokamaks. Series in Modern Applied Mathematics. Wiley/Gauthier-Villard (1989). | MR 996236 | Zbl 0717.76009
,[4] Numerical identification of the plasma current density in a Tokamak fusion reactor : the determination of a non-linear source in an elliptic pde, invited conference, in Proceedings of PICOF02. Carthage, Tunisie (2002).
,[5] Existence and control of plasma equilibirum in a Tokamak. SIAM J. Math. Anal. 17 (1986) 1158-1177. | MR 853522 | Zbl 0614.35082
, and ,[6] Real time reconstruction of plasma equilibrium in a Tokamak, International conference on burning plasma diagnostics. Villa Manoastero, Varenna (2007).
, and ,[7] On a free boundary problem arising in plasma physics. Nonlinear Anal. 4 (1980) 415-436. | MR 574364 | Zbl 0437.35032
and ,[8] Hybrid magnetohydrodynamic-gyrokinetic simulation of toroidal Alfven modes. Phys. Plasmas 2 (1995) 3711-3723.
, , and ,[9] Hybrid magnetohydrodynamic-particle simulation of linear and nonlinear evolution of Alfven modes in tokamaks. Phys. Plasmas 5 (1998) 3287-3301.
, and ,[10] A geometric approach to free boundary problems, Graduate Studies in Mathematics. AMS, Providence, RI 68 (2005). | Zbl 1083.35001
and ,[11] Introduction to plasma physics and controlled fusion. Springer, New York (1984).
,[12] MHD stability in X-point geometry : simulation of ELMs. Nucl. Fusion 47 (2007) 659-666.
and ,[13] Bézier surfaces and finite elements for MHD simulations. J. Comput. Phys. 227 (2008) 7423-7445. | MR 2437577 | Zbl 1141.76035
and ,[14] Magnetic equations with FreeFem++, The Grad-Shafranov equation and the Current Hole. ESAIM Proc. 32 (2011) 76-94. | MR 2862440 | Zbl 1235.76064
, , , , , and ,[15] On a free-boundary problem modeling the action of a limiter on a plasma. Discrete Contin. Dyn. Syst. Suppl. (2007) 313-322. | MR 2409226 | Zbl 1163.35400
and ,[16] On a two-dimensional stationary free boundary problem arising in the confinement of a plasma in a Stellarator. C. R. Acad. Sci. Paris, Sér. I 317 (1993) 353-359. | MR 1235448 | Zbl 0783.76106
and ,[17] Dynamics of viscous compressible fluids. Oxford University Press (2004). | MR 2040667 | Zbl 1080.76001
,[18] Plasma physics and fusion energy. Cambridge (2007).
,[19] Variational principles and free-boundary problems. Wiley-interscience publication, Wiley, New York (1982). | MR 679313 | Zbl 0564.49002
,[20] Tokamak equilibria with nearly zero central current : the current hole (review article). Nucl. Fusion 50 (2010).
,[21] Plasma equilibrium and confinement in a Tokamak with nearly zero central current density in JT-60U. Phys. Rev. Lett. 87 (2001) 245001-245005.
, , , , , , , , , and ,[22] Mathematical methods for the magnetohydrodynamics of liquid metals. Oxford University Press, USA (2006). | MR 2289481 | Zbl 1107.76001
, and ,[23] MHD stability of advanced Tokamak scenarios with reversed central current : an explanation of the “Current Hole”. Phys. Rev. Lett. 87 (2001) 245002-245006.
, , and ,[24] Non-linear MHD simulations of edge localized modes (ELMs). Plasma Phys. Control. Fusion 51 (2009) 124012.
, , and ,[25] Non linear helical perturbations of a plasma in a Tokamak. Sov. Phys.-JETP 38 (1974) 283-290.
and ,[26] Generalized reduced magnetohydrodynamic equations. Phys. Plasmas 5 (1998) 4169-4183. | MR 1656032
, and ,[27] Quelques méthodes de résolution des problèmes aux limites non linéaires, Études Mathématiques. Dunod (1969). | Zbl 0189.40603
,[28] Mathematical topics in fluid mechanics. Incompressible models, edited by Oxford Science Publication 1 (1996). | MR 1422251 | Zbl 0866.76002
,[29] Mathematical topics in fluid mechanics. Compressible models, edited by Oxford Science Publication 2 (1998). | MR 1637634 | Zbl 0908.76004
,[30] The XTOR code for nonlinear 3D simulations of MHD instabilities in tokamak plasmas. J. Comput. Phys. 227 (2008) 6944-6966. | MR 2435437 | Zbl pre05303093
and ,[31] XTOR-2F : A fully implicit NewtonKrylov solver applied to nonlinear 3D extended MHD in tokamaks. J. Comput. Phys. 229 (2010) 8130-8143. | MR 2719164 | Zbl 1220.76055
and ,[32] Plasma physics and controlled nuclear fusion. Springer (2005). | Zbl 1276.81126
,[33] Private communication (2010).
,[34] Dynamics of high β plasmas. Phys. Fluids 19 (1976) 1987.
, , and ,[35] Reduced, three-dimensional, nonlinear equations for high-β plasmas including toroidal effects. Phys. Lett. A 82 (1981) 14-17.
,[36] Nonlinear three-dimensional magnetohydrodynamics of noncircular Tokamaks. Phys. Fluids 19 (1976) 134-140.
,[37] Dynamics of high β plasmas. Phys. Fluids 20 (1977) 1354-1360.
,[38] Remarks on a free boundary value problem arising in plasma physics. Commun. Partial Differ. Equ. 2 (1977) 563-585. | MR 602544 | Zbl 0355.35023
,[39] Navier-Stokes Equations, Theory and Numerical Analysis. North-Holland (1979). | MR 603444 | Zbl 0426.35003
,[40] Beltrami fields in plasmas : High-confinement mode boundary layers and high beta equilibria. Phys. Plasmas 8 (2001) 2125.
, , , and ,[41] Potential Control and Flow Generation in a Toroidal Internal-Coil System - a New Approach to High-beta Equilibrium, in 20th IAEA Fusion Energy Conference. Online at http://www-naweb.iaea.org/napc/physics/fec/fec2004/papers/icp6-16.pdf (2004).
et al.,