s * -compressibility of the discrete Hartree-Fock equation
Flad, Heinz-Jürgen ; Schneider, Reinhold
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 46 (2012), p. 1055-1080 / Harvested from Numdam

The Hartree-Fock equation is widely accepted as the basic model of electronic structure calculation which serves as a canonical starting point for more sophisticated many-particle models. We have studied the s∗-compressibility for Galerkin discretizations of the Hartree-Fock equation in wavelet bases. Our focus is on the compression of Galerkin matrices from nuclear Coulomb potentials and nonlinear terms in the Fock operator which hitherto has not been discussed in the literature. It can be shown that the s∗-compressibility is in accordance with convergence rates obtained from best N-term approximation for solutions of the Hartree-Fock equation. This is a necessary requirement in order to achieve numerical solutions for these equations with optimal complexity using the recently developed adaptive wavelet algorithms of Cohen, Dahmen and DeVore.

Publié le : 2012-01-01
DOI : https://doi.org/10.1051/m2an/2011077
Classification:  65Z05,  35Q40,  35C20,  35J10
@article{M2AN_2012__46_5_1055_0,
     author = {Flad, Heinz-J\"urgen and Schneider, Reinhold},
     title = {$s^\ast $-compressibility of the discrete Hartree-Fock equation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {46},
     year = {2012},
     pages = {1055-1080},
     doi = {10.1051/m2an/2011077},
     zbl = {1272.65091},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2012__46_5_1055_0}
}
Flad, Heinz-Jürgen; Schneider, Reinhold. $s^\ast $-compressibility of the discrete Hartree-Fock equation. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 46 (2012) pp. 1055-1080. doi : 10.1051/m2an/2011077. http://gdmltest.u-ga.fr/item/M2AN_2012__46_5_1055_0/

[1] D. Andrae, Numerical self-consistent field method for polyatomic molecules. Mol. Phys. 99 (2001) 327-334.

[2] T.A. Arias, Multiresolution analysis of electronic structure : Semicardinal and wavelet bases. Rev. Mod. Phys. 71 (1999) 267-312.

[3] O. Beck, D. Heinemann and D. Kolb, Fast and accurate molecular Hartree-Fock with a finite-element multigrid method. arXiv:physics/0307108 (2003).

[4] F.A. Bischoff and E.F. Valeev, Low-order tensor approximations for electronic wave functions : Hartree-Fock method with guaranteed precision. J. Chem. Phys. 134 (2011) 104104.

[5] D. Braess, Asymptotics for the approximation of wave functions by exponential sums. J. Approx. Theory 83 (1995) 93-103. | MR 1354964 | Zbl 0868.41012

[6] S.C. Brenner and L. Ridgway Scott, The Mathematical Theory of Finite Element Methods. Springer, New York (2008). | MR 2373954 | Zbl 1135.65042

[7] H.-J. Bungartz and M. Griebel, Sparse grids. Acta Numer. 13 (2004) 147-269. | MR 2249147 | Zbl 1118.65388

[8] E. Cancès, SCF algorithms for HF electronic calculations, in Mathematical Models and Methods for Ab Initio Quantum Chemistry, edited by M. Defranceschi and C. Le Bris, Springer, Berlin. Lect. Notes Chem. 74 (2000) 17-43. | MR 1855573 | Zbl 0992.81103

[9] E. Cancès and C. Le Bris, On the convergence of SCF algorithms for the Hartree-Fock equations. ESAIM : M2AN 34 (2000) 749-774. | Numdam | MR 1784484 | Zbl 1090.65548

[10] A. Cohen, W. Dahmen and R.A. Devore, Adaptive wavelet methods for elliptic operator equations, convergence rates. Math. Comp. 70 (2001) 27-75. | MR 1803124 | Zbl 0980.65130

[11] W. Dahmen, T. Rohwedder, R. Schneider and A. Zeiser, Adaptive eigenvalue computation : complexity estimates. Numer. Math. 110 (2008) 277-312. | MR 2430982 | Zbl 1157.65029

[12] R.A. Devore, Nonlinear approximation. Acta Numer. 7 (1998) 51-150. | MR 1689432 | Zbl 0931.65007

[13] Y.V. Egorov and B.-W. Schulze, Pseudo-Differential Operators, Singularities, Applications. Birkhäuser, Basel (1997). | MR 1443430 | Zbl 0877.35141

[14] T.D. Engeness and T.A. Arias, Multiresolution analysis for efficient, high precision all-electron density-functional calculations. Phys. Rev. B 65 (2002) 165106.

[15] H.-J. Flad, W. Hackbusch and R. Schneider, Best N-term approximation in electronic structure calculation. I. One-electron reduced density matrix. ESAIM : M2AN 40 (2006) 49-61. | Numdam | MR 2223504 | Zbl 1100.81050

[16] H.-J. Flad, R. Schneider and B.-W. Schulze, Asymptotic regularity of solutions of Hartree-Fock equations with Coulomb potential. Math. Methods Appl. Sci. 31 (2008) 2172-2201. | MR 2467184 | Zbl 1158.35435

[17] H. Flanders, Differentiation under the integral sign. Amer. Math. Monthly 80 (1973) 615-627. | MR 340514 | Zbl 0266.26010

[18] L. Genovese, T. Deutsch, A. Neelov, S. Goedecker and G. Beylkin, Efficient solution of Poisson's equation with free boundary conditions. J. Chem. Phys. 125 (2006) 074105.

[19] L. Genovese, A. Neelov, S. Goedecker, T. Deutsch, S.A. Ghasemi, A. Willand, D. Caliste, O. Zilberberg, M. Rayson, A. Bergman and R. Schneider, Daubechies wavelets as a basis set for density functional pseudopotential calculations. J. Chem. Phys. 129 (2008) 014109.

[20] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1998). | Zbl 1042.35002

[21] M. Griebel and J. Hamaekers, Tensor product multiscale many-particle spaces with finite-order weights for the electronic Schrödinger equation. Z. Phys. Chem. 224 (2010) 527-543.

[22] P. Hajłasz, P. Koskela and H. Tuominen, Sobolev embeddings, extensions and measure density condition. J. Funct. Anal. 254 (2008) 1217-1234. | MR 2386936 | Zbl 1136.46029

[23] R.J. Harrison, G.I. Fann, T. Yanai, Z. Gan and G. Beylkin, Multiresolution quantum chemistry : Basic theory and initial applications. J. Chem. Phys. 121 (2004) 11587-11598.

[24] D. Heinemann, A. Rosén and B. Fricke, Solution of the Hartree-Fock equations for atoms and diatomic molecules with the finite element method. Phys. Scr. 42 (1990) 692-696.

[25] T. Helgaker, P. Jørgensen and J. Olsen, Molecular Electronic-Structure Theory. Wiley, New York (1999).

[26] W. Klopper, F.R. Manby, S. Ten-No and E.F. Valeev, R12 methods in explicitly correlated molecular electronic structure theory. Int. Rev. Phys. Chem. 25 (2006) 427-468.

[27] J. Kobus, L. Laaksonen and D. Sundholm, A numerical Hartree-Fock program for diatomic molecules. Comput. Phys. Commun. 98 (1996) 346-358.

[28] W. Kutzelnigg, Theory of the expansion of wave functions in a Gaussian basis. Int. J. Quantum Chem. 51 (1994) 447-463.

[29] E.H. Lieb and B. Simon, The Hartree-Fock theory for Coulomb systems. Commun. Math. Phys. 53 (1977) 185-194. | MR 452286

[30] P.L. Lions, Solutions of Hartree-Fock equations for Coulomb systems. Commun. Math. Phys. 109 (1987) 33-97. | MR 879032 | Zbl 0618.35111

[31] A.I. Neelov and S. Goedecker, An efficient numerical quadrature for the calculation of the potential energy of wavefunctions expressed in the Daubechies wavelet basis. J. Comp. Phys. 217 (2006) 312-339. | MR 2260604 | Zbl 1102.65110

[32] T. Rohwedder, R. Schneider and A. Zeiser, Perturbed preconditioned inverse iteration for operator eigenvalue problems with applications to adaptive wavelet discretization. Adv. Comput. Math. 34 (2011) 43-66. | MR 2783301 | Zbl 1208.65160

[33] R. Schneider, Multiskalen-und Wavelet-Matrixkompression. Teubner, Stuttgart (1998). | MR 1623209

[34] C. Schwab and R. Stevenson, Adaptive wavelet algorithms for elliptic PDE's on product domains. Math. Comp. 77 (2008) 71-92. | MR 2353944 | Zbl 1127.41009

[35] O. Sinanoğlu, Perturbation theory of many-electron atoms and molecules. Phys. Rev. 122 (1961) 493-499. | MR 122423 | Zbl 0105.43006

[36] O. Sinanoğlu, Theory of electron correlation in atoms and molecules. Proc. R. Soc. Lond., Ser. A 260 (1961) 379-392. | MR 119881 | Zbl 0098.23101

[37] R. Stevenson, On the compressibility of operators in wavelet coordinates. SIAM J. Math. Anal. 35 (2004) 1110-1132. | MR 2050194 | Zbl 1087.47012

[38] T. Yanai, G.I. Fann, Z. Gan, R.J. Harrison and G. Beylkin, Multiresolution quantum chemistry in multiwavelet basis : Hartree-Fock exchange. J. Chem. Phys. 121 (2004) 6680-6688. | MR 2103733

[39] H. Yserentant, On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives. Numer. Math. 98 (2004) 731-759. | MR 2099319 | Zbl 1062.35100