The present work aims at proposing a rigorous analysis of the mathematical and numerical modelling of ultrasonic piezoelectric sensors. This includes the well-posedness of the final model, the rigorous justification of the underlying approximation and the design and analysis of numerical methods. More precisely, we first justify mathematically the classical quasi-static approximation that reduces the electric unknowns to a scalar electric potential. We next justify the reduction of the computation of this electric potential to the piezoelectric domains only. Particular attention is devoted to the different boundary conditions used to model the emission and reception regimes of the sensor. Finally, an energy preserving finite element/finite difference numerical scheme is developed; its stability is analyzed and numerical results are presented.
@article{M2AN_2012__46_4_875_0, author = {Imperiale, Sebastien and Joly, Patrick}, title = {Mathematical and numerical modelling of piezoelectric sensors}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {46}, year = {2012}, pages = {875-909}, doi = {10.1051/m2an/2011070}, mrnumber = {2891473}, zbl = {1279.78013}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2012__46_4_875_0} }
Imperiale, Sebastien; Joly, Patrick. Mathematical and numerical modelling of piezoelectric sensors. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 46 (2012) pp. 875-909. doi : 10.1051/m2an/2011070. http://gdmltest.u-ga.fr/item/M2AN_2012__46_4_875_0/
[1] Finite element modeling for ultrasonic transducers. SPIE Int. Symp. Medical Imaging (1998).
, and ,[2] Models of elastic plates with piezoelectric inclusions part i : Models without homogenization. Math. Comput. Model. 26 (1997) 79-106. | MR 1480355 | Zbl 0899.73224
and ,[3] Optimizing ultrasonic transducers based on piezoelectric composites using a finite-element method. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37 (2002) 135-140.
,[4] Higher-order numerical methods for transient wave equations. Springer (2002). | MR 1870851 | Zbl 0985.65096
,[5] Elastic waves in solids, free and guided propagation. Springer (2000). | MR 1848500 | Zbl 0960.74002
and ,[6] Influence of gauss and gauss-lobatto quadrature rules on the accuracy of a quadrilateral finite element method in the time domain. Numer. Methods Partial Differ. Equ. 25 (2009) 526-551. | MR 2510746 | Zbl 1167.65057
, and ,[7] Piezoelectric modelling using a time domain finite element program. J. Eur. Ceram. Soc. 27 (2007) 4153-4157.
and ,[8] Fundamentals of piezoelectricity. Oxford science publications (1990).
,[9] Effective computational methods for wave propagation. Chapman and Hall/CRC (2008). | MR 2406004 | Zbl 1134.65002
, and ,[10] Fem-based determination of real and complex elastic, dielectric, and piezoelectric moduli in piezoceramic materials. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55 (2008) 465-475.
, , , and .[11] Simulation of piezoelectric devices by two-and three-dimensional finite elements. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37 (2002) 233-247.
,[12] Transient wave propagation in a transversely isotropic piezoelectric half space. Z. Angew. Math. Phys. 51 (2000) 236-266. | MR 1756169 | Zbl 1005.74032
,[13] Existence, uniqueness, and regularity results for piezoelectric systems. SIAM J. Math. Anal. 37 (2005) 651-672. | MR 2176119 | Zbl 1127.35064
and ,[14] Numerical modeling of a circular piezoelectric ultrasonic transducer radiating in water. ABCM Symposium Series in Mechatronics 2 (2005) 458-464.
, and ,[15] Finite element methods for maxwell's equations. Oxford science publications (2003). | Zbl 1024.78009
,[16] Acoustic and electromagnetic equations : integral representations for harmonic problems. Springer (2001). | MR 1822275 | Zbl 0981.35002
,[17] An initial boundary-value problem for model electromagnetoelasticity system. J. Differ. Equ. 235 (2007) 31-55. | MR 2309565 | Zbl 1117.35078
and ,[18] Ultrasonic nondestructive evaluation systems. Springer (2007).
and ,[19] A local compactness theorem for maxwell's equations. Math. Methods Appl. Sci. 2 (1980) 12-25. | MR 561375 | Zbl 0432.35032
and ,