PDE-constrained optimization of time-dependent 3D electromagnetic induction heating by alternating voltages
Tröltzsch, Fredi ; Yousept, Irwin
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 46 (2012), p. 709-729 / Harvested from Numdam

This paper is concerned with a PDE-constrained optimization problem of induction heating, where the state equations consist of 3D time-dependent heat equations coupled with 3D time-harmonic eddy current equations. The control parameters are given by finite real numbers representing applied alternating voltages which enter the eddy current equations via impressed current. The optimization problem is to find optimal voltages so that, under certain constraints on the voltages and the temperature, a desired temperature can be optimally achieved. As there are finitely many control parameters but the state constraint has to be satisfied in an infinite number of points, the problem belongs to a class of semi-infinite programming problems. We present a rigorous analysis of the optimization problem and a numerical strategy based on our theoretical result.

Publié le : 2012-01-01
DOI : https://doi.org/10.1051/m2an/2011052
Classification:  49J20,  78A25,  78A30,  35K40,  90C48
@article{M2AN_2012__46_4_709_0,
     author = {Tr\"oltzsch, Fredi and Yousept, Irwin},
     title = {PDE-constrained optimization of time-dependent 3D electromagnetic induction heating by alternating voltages},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {46},
     year = {2012},
     pages = {709-729},
     doi = {10.1051/m2an/2011052},
     mrnumber = {2891467},
     zbl = {1288.78040},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2012__46_4_709_0}
}
Tröltzsch, Fredi; Yousept, Irwin. PDE-constrained optimization of time-dependent 3D electromagnetic induction heating by alternating voltages. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 46 (2012) pp. 709-729. doi : 10.1051/m2an/2011052. http://gdmltest.u-ga.fr/item/M2AN_2012__46_4_709_0/

[1] A. Alonso and A. Valli, Eddy Current Approximation of Maxwell Equations : Theory, Algorithms and Applications. Springer (2010). | MR 2680968 | Zbl 1204.78001

[2] C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21 (1998) 823-864. | MR 1626990 | Zbl 0914.35094

[3] O. Bodart, A.V. Boureau and R. Touzani, Numerical investigation of optimal control of induction heating processes. Appl. Math. Modelling 25 (2001) 697-712. | Zbl 0990.93089

[4] F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems. Springer-Verlag, New York (2000). | MR 1756264 | Zbl 0966.49001

[5] A. Bossavit and J.-F. Rodrigues, On the electromagnetic induction heating problem in bounded domains. Adv. Math. Sci. Appl. 4 (1994) 79-92. | MR 1287908 | Zbl 0813.35120

[6] E. Casas, Pontryagin's principle for state-constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Optim. 35 (1997) 1297-1327. | MR 1453300 | Zbl 0893.49017

[7] S. Clain and R. Touzani, A two-dimensional stationary induction heating problem. Math. Methods Appl. Sci. 20 (1997) 759-766. | MR 1446209 | Zbl 0870.35034

[8] S. Clain, J. Rappaz, M. Swierkosz and R. Touzani, Numerical modelling of induction heating for two-dimensional geometries. Math. Models Methods Appl. Sci. 3 (1993) 805-7822. | MR 1245636 | Zbl 0801.65120

[9] P.-E. Druet, O. Klein, J. Sprekels, F. Tröltzsch and I. Yousept, Optimal control of three-dimensional state-constrained induction heating problems with nonlocal radiation effects. SIAM J. Control Optim. 49 (2011) 1707-1736. | MR 2837572 | Zbl 1229.49021

[10] J.A. Griepentrog, Maximal regularity for nonsmooth parabolic problems in Sobolev-Morrey spaces. Adv. Differ. Equ. 12 (2007) 1031-1078. | MR 2351837 | Zbl 1157.35023

[11] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985). | MR 775683 | Zbl 0695.35060

[12] D. Hömberg, Induction hardening of steel - modeling, analysis and optimal design of inductors. Habilitation thesis, TU Berlin (2001).

[13] D. Hömberg, A mathematical model for induction hardening including mechanical effects. Nonlin. Anal. Real World Appl. 5 (2004) 55-90. | MR 2004087 | Zbl pre02196660

[14] J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Dunod, Paris 1-3 (1968). | Zbl 0165.10801

[15] A.C. Metaxas, Foundations of Electroheat : A Unified Approach. Wiley (1996). | MR 1307664

[16] P. Monk, Finite element methods for Maxwell's equations. Clarendon press, Oxford (2003). | MR 2059447 | Zbl 1024.78009

[17] J.C. Nédélec, Mixed finite elements in R3. Numer. Math. 35 (1980) 315-341. | Zbl 0419.65069

[18] J. Nocedal and S.J. Wright, Numerical Optimization. Springer-Verlag, New York (1999). | MR 1713114 | Zbl 1104.65059

[19] C. Parietti and J. Rappaz, A quasi-static two-dimensional induction heating problem. I : Modelling and analysis. Math. Models Methods Appl. Sci. 8 (1998) 1003-1021. | MR 1646519 | Zbl 1010.80002

[20] C. Parietti and J. Rappaz, A quasi-static two-dimensional induction heating problem II. numerical analysis. Math. Models Methods Appl. Sci. 9 (1999) 1333-1350. | MR 1725821 | Zbl 1010.80004

[21] J. Rappaz and M. Swierkosz, Mathematical modelling and numerical simulation of induction heating processes. Appl. Math. Comput. Sci. 6 (1996) 207-221. | MR 1401128 | Zbl 0876.65082

[22] F. Tröltzsch, Optimal control of partial differential equations, Graduate Studies in Mathematics. American Mathematical Society, Providence, RI 112 (2010). | Zbl 1195.49001

[23] D. Wachsmuth and A. Rösch, How to check numerically the sufficient optimality conditions for infinite-dimensional optimization problems, in Optimal control of coupled systems of partial differential equations, Internat. Ser. Numer. Math. Birkhäuser Verlag, Basel 158 (2009) 297-317. | MR 2588562 | Zbl 1197.49022

[24] I. Yousept, Optimal control of a nonlinear coupled electromagnetic induction heating system with pointwise state constraints. Mathematics and its Applications/Annals of AOSR 2 (2010) 45-77. | MR 2661664 | Zbl 1205.49008

[25] I. Yousept, Optimal control of Maxwell's equations with regularized state constraints. Comput. Optim. Appl. (2011) DOI: 10.1007/s10589-011-9422-2. | MR 2925786 | Zbl 1250.49026