The convergence and efficiency of the reduced basis method used for the approximation of the solutions to a class of problems written as a parametrized PDE depends heavily on the choice of the elements that constitute the “reduced basis”. The purpose of this paper is to analyze the a priori convergence for one of the approaches used for the selection of these elements, the greedy algorithm. Under natural hypothesis on the set of all solutions to the problem obtained when the parameter varies, we prove that three greedy algorithms converge; the last algorithm, based on the use of an a posteriori estimator, is the approach actually employed in the calculations.
@article{M2AN_2012__46_3_595_0, author = {Buffa, Annalisa and Maday, Yvon and Patera, Anthony T. and Prud'homme, Christophe and Turinici, Gabriel}, title = {A priori convergence of the greedy algorithm for the parametrized reduced basis method}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {46}, year = {2012}, pages = {595-603}, doi = {10.1051/m2an/2011056}, zbl = {1272.65084}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2012__46_3_595_0} }
Buffa, Annalisa; Maday, Yvon; Patera, Anthony T.; Prud’homme, Christophe; Turinici, Gabriel. A priori convergence of the greedy algorithm for the parametrized reduced basis method. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 46 (2012) pp. 595-603. doi : 10.1051/m2an/2011056. http://gdmltest.u-ga.fr/item/M2AN_2012__46_3_595_0/
[1] Convergence rates for greedy algorithms in reduced basis methods. SIAM J. Math. Anal. 43 (2011) 1457-1472. | MR 2821591 | Zbl 1229.65193
, , , , and ,[2] Über die beste Annäherung von Funktionen einer gegebenen Funktionenklasse. Ann. Math. (2) 37 (1936) 107-110. | MR 1503273 | Zbl 0013.34903
,[3] A priori convergence theory for reduced-basis approximations of single-parametric elliptic partial differential equations. J. Sci. Comput. 17 (2002) 437-446. | MR 1910581 | Zbl 1014.65115
, and ,[4] Global a priori convergence theory for reduced-basis approximations of single-parameter symmetric coercive elliptic partial differential equations. C. R. Acad. Sci., Paris, Sér. I Math. 335 (2002) 289-294. | MR 1933676 | Zbl 1009.65066
, and ,[5] On n-widths for elliptic problems. J. Math. Anal. Appl. 247 (2000) 272-289. | MR 1766938 | Zbl 0963.35047
,[6] n-widths in approximation theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] 7. Springer-Verlag, Berlin (1985). | MR 774404 | Zbl 0551.41001
,[7] Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations - application to transport and continuum mechanics. Arch. Comput. Methods Eng. 15 (2008) 229-275. | MR 2430350 | Zbl 1304.65251 | Zbl pre05344486
, and ,[8] Reduced-basis approximation and a posteriori error estimation for many-parameter heat conduction problems. Numer. Heat Transfer Part B 54 (2008) 369-389.
,[9] A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations, in Proceedings of the 16th AIAA Computational Fluid Dynamics Conference (2003) 2003-3847.
, , and ,