We study order-adaptive implementations of Hermite methods for hyperbolic and singularly perturbed parabolic initial value problems. Exploiting the facts that Hermite methods allow the degree of the local polynomial representation to vary arbitrarily from cell to cell and that, for hyperbolic problems, each cell can be evolved independently over a time-step determined only by the cell size, a relatively straightforward method is proposed. Its utility is demonstrated on a number of model problems posed in 1+1 and 2+1 dimensions.
@article{M2AN_2012__46_3_545_0, author = {Chen, Ronald and Hagstrom, Thomas}, title = {$P$-adaptive Hermite methods for initial value problems}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {46}, year = {2012}, pages = {545-557}, doi = {10.1051/m2an/2011050}, zbl = {1272.65077}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2012__46_3_545_0} }
Chen, Ronald; Hagstrom, Thomas. $P$-adaptive Hermite methods for initial value problems. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 46 (2012) pp. 545-557. doi : 10.1051/m2an/2011050. http://gdmltest.u-ga.fr/item/M2AN_2012__46_3_545_0/
[1] Discrete dispersion relation for hp-version finite element approximation at high wave number. SIAM J. Numer. Anal. 42 (2004) 553-575. | MR 2084226 | Zbl 1074.65112
,[2] Dispersive and dissipative behavior of high-order discontinuous Galerkin finite element methods. J. Comput. Phys. 198 (2004) 106-130. | MR 2071391 | Zbl 1058.65103
,[3] Experiments with Hermite methods for simulating compressible flows : Runge-Kutta time-stepping and absorbing layers, in 13th AIAA/CEAS Aeroacoustics Conference. AIAA (2007).
and ,[4] Piecewise Hermite interpolation in one and two variables with applications to partial differential equations. Numer. Math. 11 (1968) 232-256. | MR 226817 | Zbl 0159.20904
, and ,[5] Polynomials and Polynomial Inequalities. Springer-Verlag, New York (1995). | MR 1367960 | Zbl 0840.26002
and ,[6] Interpolation and Approximation. Dover Publications, New York (1975). | MR 380189 | Zbl 0329.41010
,[7] Computing with hp-Adaptive Finite Elements. Applied Mathematics & Nonlinear Science, Chapman & Hall/CRC, Boca Raton (2007). | Zbl 1148.65001
, , , , and ,[8] A high-order Hermite compressible Navier-Stokes solver. Master's thesis, The University of New Mexico (2003).
,[9] On a Fourier method for the integration of hyperbolic equations. SIAM J. Numer. Anal. 12 (1975) 509-528. | MR 421096 | Zbl 0349.35003
,[10] Hermite methods for hyperbolic initial-boundary value problems. Math. Comput. 75 (2006) 595-630. | MR 2196982 | Zbl 1103.35065
, and ,[11] Numerical Analysis of Spectral Methods. SIAM, Philadelphia (1977). | Zbl 0412.65058
and ,[12] The CFL condition for spectral approximations to hyperbolic initial-boundary value problems. Math. Comput. 56 (1991) 565-588. | MR 1066833 | Zbl 0723.65079
and ,[13] Evaluating Derivatives : Principles and Techniques of Algorithmic Differentiation. SIAM, Philadelphia (2000). | MR 1753583 | Zbl 1159.65026
,[14] Fast numerical solution of nonlinear Volterra convolutional equations. SIAM J. Sci. Statist. Comput. 6 (1985) 532-541. | MR 791183 | Zbl 0581.65095
, and ,[15] Nonoscillatory central schemes for multidimensional hyperbolic conservation laws. SIAM J. Sci. Comput. 19 (1998) 1892-1917. | MR 1638064 | Zbl 0914.65095
and ,[16] Comparison of accurate methods for the integration of hyperbolic equations. Tellus 24 (1972) 199-215. | MR 319382
and ,[17] An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations. J. Comput. Phys. 227 (2008) 5649-5670. | MR 2414924 | Zbl 1147.65077
, and ,[18] Taming the CFL number for discontinuous Galerkin methods on structured meshes. SIAM J. Numer. Anal. 46 (2008) 3151-3180. | MR 2439506 | Zbl 1181.35010
and ,[19] The eigenvalues of second-order differentiation matrices. SIAM J. Numer. Anal. 25 (1988) 1279-1298. | MR 972454 | Zbl 0666.65063
and ,