We present an alternative framework for designing efficient numerical schemes for non-conservative hyperbolic systems. This approach is based on the design of entropy conservative discretizations and suitable numerical diffusion operators that mimic the effect of underlying viscous mechanisms. This approach is illustrated by considering two model non-conservative systems: Lagrangian gas dynamics in non-conservative form and a form of isothermal Euler equations. Numerical experiments demonstrating the robustness of this approach are presented.
@article{M2AN_2012__46_1_187_0, author = {Fjordholm, Ulrik Skre and Mishra, Siddhartha}, title = {Accurate numerical discretizations of non-conservative hyperbolic systems}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {46}, year = {2012}, pages = {187-206}, doi = {10.1051/m2an/2011044}, mrnumber = {2846371}, zbl = {1272.65064}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2012__46_1_187_0} }
Fjordholm, Ulrik Skre; Mishra, Siddhartha. Accurate numerical discretizations of non-conservative hyperbolic systems. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 46 (2012) pp. 187-206. doi : 10.1051/m2an/2011044. http://gdmltest.u-ga.fr/item/M2AN_2012__46_1_187_0/
[1] Two-layer shallow water system: a relaxation approach. SIAM. J. Sci. Comput. 31 (2009) 1603-1627. | MR 2491538 | Zbl 1188.76229
and ,[2] A comment on the computation of non-conservative products. J. Comput. Phys. 229 (2010) 2759-2763. | MR 2595792 | Zbl 1188.65134
and ,[3] A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM. J. Sci. Comput. 25 (2004) 2050-2065. | MR 2086830 | Zbl 1133.65308
, , , and ,[4] Finite volume solvers for multi-layer Saint-Venant system. Int. J. Appl. Math. Comput. Sci. 17 (2007) 311-319. | MR 2356890 | Zbl 1152.35305
and ,[5] Why many theories of shock waves are necessary: Convergence error in formally path-consistent schemes. J. Comput. Phys. 227 (2008) 8107-8129. | MR 2442446 | Zbl 1176.76084
, , and ,[6] Continuous dependence of entropy solutions to the euler equations on the adiabatic exponent and mach number. Arch. Ration. Mech. Anal. 189 (2008) 97-130. | MR 2403601 | Zbl 1140.76032
, and ,[7] Definition and weak stability of nonconservative products. J. Math. Pures. Appl. 74 (1995) 483-548. | MR 1365258 | Zbl 0853.35068
, and ,[8] Energy preserving and energy stable schemes for the shallow water equations,Foundations of Computational Mathematics, Proc. FoCM held in Hong Kong 2008, London Math. Soc. Lecture Notes Ser. 363, edited by F. Cucker, A. Pinkus and M. Todd (2009) 93-139. | MR 2562498 | Zbl pre05620960
, and ,[9] Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography. J. Comput. Phys. 230 (2011) 5587-5609. | MR 2799526 | Zbl pre05920301
, and ,[10] Hyperbolic systems of conservation laws. Ellipses (1991). | MR 1304494 | Zbl 0768.35059
and ,[11] High order time discretization methods with the strong stability property, SIAM Rev. 43 (2001) 89-112. | MR 1854647 | Zbl 0967.65098
, and ,[12] Viscous shock profiles and primitive formulations. SIAM J. Numer. Anal. 29 (1992) 1592-1609. | MR 1191138 | Zbl 0764.76032
,[13] Entropy weak solutions to nonlinear hyperbolic systems in nonconservative form. Comm. Partial Differential Equations 13 (1988) 669-727. | MR 934378 | Zbl 0683.35049
,[14] Why nonconservative schemes converge to wrong solutions. Error analysis. Math. Comput. 62 (1994) 497-530. | MR 1201068 | Zbl 0809.65102
and ,[15] The Riemann problem for fluid flows in a nozzle with discontinuous cross-section. Commun. Math. Sci. 1 (2003) 763-797. | MR 2041456 | Zbl 1091.35044
and ,[16] Fully discrete entropy conservative schemes of arbitrary order. SIAM J. Numer. Anal. 40 (2002) 1968-1992. | MR 1950629 | Zbl 1033.65073
, and ,[17] Finite volume methods for hyperbolic problems.Cambridge university press, Cambridge (2002). | MR 1925043 | Zbl 1010.65040
,[18] Shock waves for compressible Navier-Stokes equations are stable. Comm. Pure Appl. Math. 39 (1986) 565-594. | MR 849424 | Zbl 0617.76069
,[19] Godunov method for non-conservative hyperbolic systems. Math. Model. Num. Anal. 41 (2007) 169-185. | Numdam | MR 2323696 | Zbl 1124.65077
and ,[20] On the well-balance property of Roe's method for nonconservative hyperbolic systems. Applications to shallow water equations. Math. Model. Num. Anal. 38 (2004) 821-852. | Numdam | MR 2104431 | Zbl 1130.76325
and ,[21] Numerical methods for non-conservative hyperbolic systems: a theoretical framework. SIAM. J. Num. Anal. 44 (2006) 300-321. | MR 2217384 | Zbl 1130.65089
,[22] The numerical viscosity of entropy stable schemes for systems of conservation laws, I. Math. Comp. 49 (1987) 91-103. | MR 890255 | Zbl 0641.65068
,[23] Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12 (2003) 451-512. | MR 2249160 | Zbl 1046.65078
,[24] Entropy stable approximations of Navier-Stokes equations with no artificial numerical viscosity. J. Hyperbolic Differ. Equ. 3 (2006) 529-559. | MR 2238741 | Zbl pre05045425
and ,[25] Energy preserving and stable approximations for the two-dimensional shallow water equations,in Mathematics and computation: A contemporary view, Proc. of the third Abel symposium. Ålesund, Norway, Springer (2008) 67-94. | MR 2503502 | Zbl pre05528361
and ,[26] Conservative models and numerical methods for compressible two-phase flow. J. Sci. Comput. 42 (2010) 68-95. | MR 2576365 | Zbl 1203.76095
, and ,