Accurate numerical discretizations of non-conservative hyperbolic systems
Fjordholm, Ulrik Skre ; Mishra, Siddhartha
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 46 (2012), p. 187-206 / Harvested from Numdam

We present an alternative framework for designing efficient numerical schemes for non-conservative hyperbolic systems. This approach is based on the design of entropy conservative discretizations and suitable numerical diffusion operators that mimic the effect of underlying viscous mechanisms. This approach is illustrated by considering two model non-conservative systems: Lagrangian gas dynamics in non-conservative form and a form of isothermal Euler equations. Numerical experiments demonstrating the robustness of this approach are presented.

Publié le : 2012-01-01
DOI : https://doi.org/10.1051/m2an/2011044
Classification:  65M06,  35L65
@article{M2AN_2012__46_1_187_0,
     author = {Fjordholm, Ulrik Skre and Mishra, Siddhartha},
     title = {Accurate numerical discretizations of non-conservative hyperbolic systems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {46},
     year = {2012},
     pages = {187-206},
     doi = {10.1051/m2an/2011044},
     mrnumber = {2846371},
     zbl = {1272.65064},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2012__46_1_187_0}
}
Fjordholm, Ulrik Skre; Mishra, Siddhartha. Accurate numerical discretizations of non-conservative hyperbolic systems. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 46 (2012) pp. 187-206. doi : 10.1051/m2an/2011044. http://gdmltest.u-ga.fr/item/M2AN_2012__46_1_187_0/

[1] R. Abgrall and S. Karni, Two-layer shallow water system: a relaxation approach. SIAM. J. Sci. Comput. 31 (2009) 1603-1627. | MR 2491538 | Zbl 1188.76229

[2] R. Abgrall and S. Karni, A comment on the computation of non-conservative products. J. Comput. Phys. 229 (2010) 2759-2763. | MR 2595792 | Zbl 1188.65134

[3] E. Audusse, F. Bouchut, M.O. Bristeau, R. Klien and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM. J. Sci. Comput. 25 (2004) 2050-2065. | MR 2086830 | Zbl 1133.65308

[4] E. Audusse and M.O. Bristeau, Finite volume solvers for multi-layer Saint-Venant system. Int. J. Appl. Math. Comput. Sci. 17 (2007) 311-319. | MR 2356890 | Zbl 1152.35305

[5] M.J. Castro, P. Lefloch, M.L. Munoz Ruiz and C. Pares , Why many theories of shock waves are necessary: Convergence error in formally path-consistent schemes. J. Comput. Phys. 227 (2008) 8107-8129. | MR 2442446 | Zbl 1176.76084

[6] G.-Q. Chen, C. Christoforou and Y. Zhang, Continuous dependence of entropy solutions to the euler equations on the adiabatic exponent and mach number. Arch. Ration. Mech. Anal. 189 (2008) 97-130. | MR 2403601 | Zbl 1140.76032

[7] G. Dal Maso , P. Lefloch and F. Murat, Definition and weak stability of nonconservative products. J. Math. Pures. Appl. 74 (1995) 483-548. | MR 1365258 | Zbl 0853.35068

[8] U.S. Fjordholm, S. Mishra and E. Tadmor, Energy preserving and energy stable schemes for the shallow water equations,Foundations of Computational Mathematics, Proc. FoCM held in Hong Kong 2008, London Math. Soc. Lecture Notes Ser. 363, edited by F. Cucker, A. Pinkus and M. Todd (2009) 93-139. | MR 2562498 | Zbl pre05620960

[9] U.S. Fjordholm, S. Mishra and E. Tadmor, Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography. J. Comput. Phys. 230 (2011) 5587-5609. | MR 2799526 | Zbl pre05920301

[10] E. Godlewski and P.-A. Raviart, Hyperbolic systems of conservation laws. Ellipses (1991). | MR 1304494 | Zbl 0768.35059

[11] S. Gottlieb , C.-W. Shu and E. Tadmor , High order time discretization methods with the strong stability property, SIAM Rev. 43 (2001) 89-112. | MR 1854647 | Zbl 0967.65098

[12] S. Karni, Viscous shock profiles and primitive formulations. SIAM J. Numer. Anal. 29 (1992) 1592-1609. | MR 1191138 | Zbl 0764.76032

[13] P.G. Lefloch, Entropy weak solutions to nonlinear hyperbolic systems in nonconservative form. Comm. Partial Differential Equations 13 (1988) 669-727. | MR 934378 | Zbl 0683.35049

[14] T.Y. Hou and P.G. Lefloch, Why nonconservative schemes converge to wrong solutions. Error analysis. Math. Comput. 62 (1994) 497-530. | MR 1201068 | Zbl 0809.65102

[15] P.G. Lefloch and M.D. Thanh , The Riemann problem for fluid flows in a nozzle with discontinuous cross-section. Commun. Math. Sci. 1 (2003) 763-797. | MR 2041456 | Zbl 1091.35044

[16] P.G. Lefloch, J.M. Mercier and C. Rohde, Fully discrete entropy conservative schemes of arbitrary order. SIAM J. Numer. Anal. 40 (2002) 1968-1992. | MR 1950629 | Zbl 1033.65073

[17] R.J. Leveque, Finite volume methods for hyperbolic problems.Cambridge university press, Cambridge (2002). | MR 1925043 | Zbl 1010.65040

[18] T.P. Liu, Shock waves for compressible Navier-Stokes equations are stable. Comm. Pure Appl. Math. 39 (1986) 565-594. | MR 849424 | Zbl 0617.76069

[19] M.L. Munoz Ruiz and C. Pares, Godunov method for non-conservative hyperbolic systems. Math. Model. Num. Anal. 41 (2007) 169-185. | Numdam | MR 2323696 | Zbl 1124.65077

[20] C. Pares and M.J. Castro, On the well-balance property of Roe's method for nonconservative hyperbolic systems. Applications to shallow water equations. Math. Model. Num. Anal. 38 (2004) 821-852. | Numdam | MR 2104431 | Zbl 1130.76325

[21] C. Pares, Numerical methods for non-conservative hyperbolic systems: a theoretical framework. SIAM. J. Num. Anal. 44 (2006) 300-321. | MR 2217384 | Zbl 1130.65089

[22] E. Tadmor, The numerical viscosity of entropy stable schemes for systems of conservation laws, I. Math. Comp. 49 (1987) 91-103. | MR 890255 | Zbl 0641.65068

[23] E. Tadmor, Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12 (2003) 451-512. | MR 2249160 | Zbl 1046.65078

[24] E. Tadmor and W. Zhong, Entropy stable approximations of Navier-Stokes equations with no artificial numerical viscosity. J. Hyperbolic Differ. Equ. 3 (2006) 529-559. | MR 2238741 | Zbl pre05045425

[25] E. Tadmor and W. Zhong, Energy preserving and stable approximations for the two-dimensional shallow water equations,in Mathematics and computation: A contemporary view, Proc. of the third Abel symposium. Ålesund, Norway, Springer (2008) 67-94. | MR 2503502 | Zbl pre05528361

[26] E. Romenski, D. Drikakis and E. Toro, Conservative models and numerical methods for compressible two-phase flow. J. Sci. Comput. 42 (2010) 68-95. | MR 2576365 | Zbl 1203.76095