Cell centered Galerkin methods for diffusive problems
Di Pietro, Daniele A.
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 46 (2012), p. 111-144 / Harvested from Numdam

In this work we introduce a new class of lowest order methods for diffusive problems on general meshes with only one unknown per element. The underlying idea is to construct an incomplete piecewise affine polynomial space with optimal approximation properties starting from values at cell centers. To do so we borrow ideas from multi-point finite volume methods, although we use them in a rather different context. The incomplete polynomial space replaces classical complete polynomial spaces in discrete formulations inspired by discontinuous Galerkin methods. Two problems are studied in this work: a heterogeneous anisotropic diffusion problem, which is used to lay the pillars of the method, and the incompressible Navier-Stokes equations, which provide a more realistic application. An exhaustive theoretical study as well as a set of numerical examples featuring different difficulties are provided.

Publié le : 2012-01-01
DOI : https://doi.org/10.1051/m2an/2011016
Classification:  65N08,  65N30,  76D05
@article{M2AN_2012__46_1_111_0,
     author = {Di Pietro, Daniele A.},
     title = {Cell centered Galerkin methods for diffusive problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {46},
     year = {2012},
     pages = {111-144},
     doi = {10.1051/m2an/2011016},
     mrnumber = {2846369},
     zbl = {1279.65125},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2012__46_1_111_0}
}
Di Pietro, Daniele A. Cell centered Galerkin methods for diffusive problems. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 46 (2012) pp. 111-144. doi : 10.1051/m2an/2011016. http://gdmltest.u-ga.fr/item/M2AN_2012__46_1_111_0/

[1] I. Aavatsmark, T. Barkve, Ø. Bøe and T. Mannseth, Discretization on unstructured grids for inhomogeneous, anisotropic media, Part I: Derivation of the methods. SIAM J. Sci. Comput. 19 (1998) 1700-1716. | MR 1618761 | Zbl 0951.65080

[2] I. Aavatsmark, T. Barkve, Ø. Bøe and T. Mannseth, Discretization on unstructured grids for inhomogeneous, anisotropic media, Part II: Discussion and numerical results. SIAM J. Sci. Comput. 19 (1998) 1717-1736. | MR 1611742 | Zbl 0951.65082

[3] I. Aavatsmark, G.T. Eigestad, B.T. Mallison and J.M. Nordbotten, A compact multipoint flux approximation method with improved robustness. Numer. Methods Partial Differential Equations 24 (2008) 1329-1360. | MR 2427194 | Zbl 1230.65114

[4] L. Agélas, D.A. Di Pietro and J. Droniou, The G method for heterogeneous anisotropic diffusion on general meshes. ESAIM: M2AN 44 (2010) 597-625. | Numdam | MR 2683575 | Zbl 1202.65143

[5] L. Agélas, D.A. Di Pietro, R. Eymard and R. Masson, An abstract analysis framework for nonconforming approximations of diffusion problems on general meshes. IJFV 7 (2010) 1-29. | MR 2595777

[6] D.N. Arnold, An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742-760. | MR 664882 | Zbl 0482.65060

[7] D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 1749-1779. | MR 1885715 | Zbl 1008.65080

[8] J.-P. Aubin, Analyse fonctionnelle appliquée. Presses Universitaires de France, Paris (1987). | Zbl 0654.46001

[9] L. Botti and D.A. Di Pietro, A pressure-correction scheme for convection-dominated incompressible flows with discontinuous velocity and continuous pressure. J. Comput. Phys. 230 (2011) 572-585. | MR 2745444 | Zbl 1283.76030

[10] S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods, Texts in Applied Mathematics, 3th edition 15. Springer, New York (2008). | MR 2373954 | Zbl 1135.65042

[11] F. Brezzi, K. Lipnikov and M. Shashkov, Convergence of mimetic finite difference methods for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 45 (2005) 1872-1896. | MR 2192322 | Zbl 1108.65102

[12] F. Brezzi, K. Lipnikov and V. Simoncini, A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 15 (2005) 1533-1553. | MR 2168945 | Zbl 1083.65099

[13] F. Brezzi, G. Manzini, L.D. Marini, P. Pietra and A. Russo, Discontinuous Galerkin approximations for elliptic problems. Numer. Methods Partial Differential Equations 16 (2000) 365-378. | MR 1765651 | Zbl 0957.65099

[14] A. Buffa and C. Ortner, Compact embeddings of broken Sobolev spaces and applications. IMA J. Numer. Anal. 4 (2009) 827-855. | MR 2557047 | Zbl 1181.65094

[15] E. Burman and A. Ern, Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations. Math. Comp. 76 (2007) 1119-1140. | MR 2299768 | Zbl 1118.65118

[16] E. Burman and P. Zunino, A domain decomposition method for partial differential equations with non-negative form based on interior penalties. SIAM J. Numer. Anal. 44 (2006) 1612-1638. | MR 2257119 | Zbl 1125.65113

[17] Y. Cao, R. Helmig and B.I. Wohlmuth, Geometrical interpretation of the multi-point flux approximation L-method. Internat. J. Numer. Methods Fluids 60 (2009) 1173-1199. | MR 2554072 | Zbl 1166.76042

[18] P.G. Ciarlet, The finite element method for elliptic problems, Classics in Applied Mathematics 40. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002). Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)]. | MR 1930132 | Zbl 0999.65129

[19] D.A. Di Pietro, Analysis of a discontinuous Galerkin approximation of the Stokes problem based on an artificial compressibility flux. Internat. J. Numer. Methods Fluids 55 (2007) 793-813. | MR 2359551 | Zbl 1128.76034

[20] D.A. Di Pietro, Cell centered Galerkin methods. C. R. Acad. Sci. Paris, Sér. I 348 (2010) 31-34. | MR 2586739 | Zbl 1183.65123

[21] D.A. Di Pietro, A compact cell-centered Galerkin method with subgrid stabilization. C. R. Acad. Sci. Paris, Sér. I 349 (2011) 93-98. | MR 2755705 | Zbl 1208.65165

[22] D.A. Di Pietro and A. Ern, Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations. Math. Comp. 79 (2010) 1303-1330. | MR 2629994 | Zbl pre05776268

[23] D.A. Di Pietro and A. Ern, Analysis of a discontinuous Galerkin method for heterogeneous diffusion problems with low-regularity solutions. Numer. Methods Partial Differential Equations (2011). Published online, DOI: 10.1002/num.20675. | MR 2914787 | Zbl 1267.65178

[24] D.A. Di Pietro and A. Ern, Mathematical aspects of discontinuous Galerkin methods, Mathematics and Applications 69. Springer-Verlag, Berlin (2011). In press. | Zbl 1231.65209

[25] D.A. Di Pietro, A. Ern and J.-L. Guermond, Discontinuous Galerkin methods for anisotropic semi-definite diffusion with advection. SIAM J. Numer. Anal. 46 (2008) 805-831. | MR 2383212 | Zbl 1165.49032

[26] J. Droniou and R. Eymard, A mixed finite volume scheme for anisotropic diffusion problems on any grid. Numer. Math. 105 (2006) 35-71. | MR 2257385 | Zbl 1109.65099

[27] J. Droniou, R. Eymard, T. Gallouët and R. Herbin, A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. Math. Models Methods Appl. Sci. 20 (2010) 265-295. | MR 2649153 | Zbl 1191.65142

[28] M.G. Edwards and C.F. Rogers, A flux continuous scheme for the full tensor pressure equation, in Proc. of the 4th European Conf. on the Mathematics of Oil Recovery. D Røros, Norway (1994).

[29] M.G. Edwards and C.F. Rogers, Finite volume discretization with imposed flux continuity for the general tensor pressure equation. Comput. Geosci. 2 (1998) 259-290. | MR 1686429 | Zbl 0945.76049

[30] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Applied Mathematical Sciences 159. Springer-Verlag, New York, NY (2004). | MR 2050138 | Zbl 1059.65103

[31] E. Erturk, T.C. Corke and C. Gökçöl, Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers. Internat. J. Numer. Methods Fluids 48 (2005) 747-774. | Zbl 1071.76038

[32] R. Eymard, Th. Gallouët and R. Herbin, The Finite Volume Method, edited by Ph. Charlet and J.L. Lions. North Holland (2000). | MR 1804748 | Zbl 0981.65095

[33] R. Eymard, Th. Gallouët and R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30 (2010) 1009-1043. | MR 2727814 | Zbl 1202.65144

[34] R. Eymard, R. Herbin and J.-C. Latché, Convergence analysis of a colocated finite volume scheme for the incompressible Navier-Stokes equations on general 2D or 3D meshes. SIAM J. Numer. Anal. 45 (2007) 1-36. | MR 2285842 | Zbl 1173.76028

[35] P. Grisvard, Singularities in Boundary Value Problems. Masson, Paris (1992). | MR 1173209 | Zbl 0766.35001

[36] B. Heinrich and K. Pietsch, Nitsche type mortaring for some elliptic problem with corner singularities. Computing 68 (2002) 217-238. | MR 1914113 | Zbl 1002.65124

[37] R. Herbin and F. Hubert, Benchmark on discretization schemes for anisotropic diffusion problems on general grids, in Finite Volumes for Complex Applications V, edited by R. Eymard and J.-M. Hérard. John Wiley & Sons (2008) 659-692. | MR 2451465 | Zbl 1246.76053

[38] R.B. Kellogg, On the Poisson equation with intersecting interfaces. Appl. Anal. 4 (1974/75) 101-129. Collection of articles dedicated to Nikolai Ivanovich Muskhelishvili. | MR 393815 | Zbl 0307.35038

[39] L.S.G. Kovasznay, Laminar flow behind a two-dimensional grid. Proc. Camb. Philos. Soc. 44 (1948) 58-62. | Zbl 0030.22902

[40] S. Nicaise and A.-M. Sändig, General interface problems. I, II. Math. Methods Appl. Sci. 17 (1994) 395-429, 431-450. | MR 1274152 | Zbl 0824.35015

[41] J. Nitsche, On Dirichlet problems using subspaces with nearly zero boundary conditions, in The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972). Academic Press, New York (1972) 603-627. | MR 426456 | Zbl 0271.65059

[42] R. Stenberg, Mortaring by a method of J.A. Nitsche, in Computational Mechanics: New trends and applications, edited by S.R. Idelsohn, E. Oñate and E.N. Dvorkin. Barcelona, Spain (1998) 1-6. Centro Internacional de Métodos Numéricos en Ingeniería. | MR 1839048 | Zbl 0970.74003

[43] R. Temam, Navier-Stokes Equations, Studies in Mathematics and its Applications 2. North-Holland Publishing Co., Amsterdam, revised edition (1979). Theory and numerical analysis, with an appendix by F. Thomasset. | MR 603444 | Zbl 0426.35003