In several practically interesting applications of electromagnetic scattering theory like, e.g., scattering from small point-like objects such as buried artifacts or small inclusions in non-destructive testing, scattering from thin curve-like objects such as wires or tubes, or scattering from thin sheet-like objects such as cracks, the volume of the scatterers is small relative to the volume of the surrounding medium and with respect to the wave length of the applied electromagnetic fields. This smallness typically causes problems when solving direct scattering problems due to the need to discretize the objects and also when solving inverse scattering problems because small objects have very little effect on electromagnetic fields. In this paper we consider an asymptotic representation formula for scattered electromagnetic waves caused by low volume objects contained in some otherwise homogeneous three-dimensional bounded domain, assuming only that the scatterers are measurable and well-separated from the boundary of the domain. The formula yields a very general asymptotic model for electromagnetic scattering due to low volume objects that can either be used to simulate the corresponding electromagnetic fields or as the foundation of efficient reconstruction methods for inverse scattering problems with low volume scatterers. Our analysis extends results originally obtained in [Y. Capdeboscq and M.S. Vogelius, A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction. Math. Model. Numer. Anal. 37 (2003) 159-173] for steady state voltage potentials to time-harmonic Maxwell's equations.
@article{M2AN_2011__45_6_1193_0, author = {Griesmaier, Roland}, title = {A general perturbation formula for electromagnetic fields in presence of low volume scatterers}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {45}, year = {2011}, pages = {1193-1218}, doi = {10.1051/m2an/2011015}, mrnumber = {2833178}, zbl = {1277.78021}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2011__45_6_1193_0} }
Griesmaier, Roland. A general perturbation formula for electromagnetic fields in presence of low volume scatterers. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 45 (2011) pp. 1193-1218. doi : 10.1051/m2an/2011015. http://gdmltest.u-ga.fr/item/M2AN_2011__45_6_1193_0/
[1] Sobolev Spaces, Pure Appl. Math. 65. Academic Press, New York (1975). | MR 450957 | Zbl 0314.46030
,[2] MUSIC-type electromagnetic imaging of a collection of small three-dimensional bounded inclusions. SIAM J. Sci. Comput. 29 (2007) 674-709. | MR 2306264 | Zbl 1132.78308
, , and ,[3] High-order terms in the asymptotic expansions of the steady-state voltage potentials in the presence of conductivity inhomogeneities of small diameter. SIAM J. Math. Anal. 34 (2003) 1152-1166. | MR 2001663 | Zbl 1036.35050
and ,[4] Boundary layer techniques for solving the Helmholtz equation in the presence of small inhomogeneities. J. Math. Anal. Appl. 296 (2004) 190-208. | MR 2070502 | Zbl 1149.35337
and ,[5] Polarization and Moment Tensors with Applications to Inverse Problems and Effective Medium Theory, Appl. Math. Sci. 162. Springer-Verlag, Berlin (2007). | MR 2327884 | Zbl 1220.35001
and ,[6] Electromagnetic scattering by small dielectric inhomogeneities. J. Math. Pures Appl. 82 (2003) 749-842. | MR 2005296 | Zbl 1033.78006
and ,[7] Boundary integral formulae for the reconstruction of electric and electromagnetic inhomogeneities of small volume. ESAIM: COCV 9 (2003) 49-66. | Numdam | MR 1957090 | Zbl 1075.78010
, and ,[8] An accurate formula for the reconstruction of conductivity inhomogeneities. Adv. Appl. Math. 30 (2003) 679-705. | MR 1977849 | Zbl 1040.78008
and ,[9] Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II. the full Maxwell equations. J. Math. Pures Appl. 80 (2001) 769-814. | MR 1860816 | Zbl 1042.78002
, and ,[10] Asymptotic formulas for perturbations in the eigenfrequencies of the full maxwell equations due to the presence of imperfections of small diameter. Asympt. Anal. 30 (2002) 331-350. | MR 1932037 | Zbl 1026.78005
and ,[11] The leading order term in the asymptotic expansion of the scattering amplitude of a collection of finite number of dielectric inhomogeneities of small diameter. Int. J. Multiscale Comput. Engrg. 3 (2005) 149-160.
and ,[12] Multigrid in H(div) and H(curl). Numer. Math. 85 (2000) 197-217. | MR 1754719 | Zbl 0974.65113
, and ,[13] Thin cylindrical conductivity inclusions in a 3-dimensional domain: a polarization tensor and unique determination from boundary data. Inverse Problems 25 (2009) 065004. | MR 2506849 | Zbl 1173.35721
, , and ,[14] Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of thin inhomogeneities Contemp. Math. 333, edited by G. Uhlmann and G. Alessandrini, Amer. Math. Soc., Providence (2003). | MR 2032006 | Zbl 1148.35354
and ,[15] Asymptotic formulas for steady state voltage potentials in the presence of thin inhomogeneities. a rigorous error analysis. J. Math. Pures Appl. 82 (2003) 1277-1301. | MR 2020923 | Zbl 1089.78003
, and ,[16] Asymptotic formulas for steady state voltage potentials in the presence of conductivity imperfections of small area. Z. Angew. Math. Phys. 52 (2001) 543-572. | MR 1856987 | Zbl 0974.78006
, and ,[17] A direct impedance tomography algorithm for locating small inhomogeneities. Numer. Math. 93 (2003) 635-654. | MR 1961882 | Zbl 1016.65079
, and ,[18] A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction. Math. Model. Numer. Anal. 37 (2003) 159-173. | Numdam | MR 1972656 | Zbl 1137.35346
and ,[19] Optimal asymptotic estimates for the volume of internal inhomogeneities in terms of multiple boundary measurements. Math. Model. Numer. Anal. 37 (2003) 227-240. | Numdam | MR 1991198 | Zbl 1137.35347
and ,[20] A review of some recent work on impedance imaging for inhomogeneities of low volume fraction. Contemp. Math. 362, edited by C. Conca, R. Manasevich, G. Uhlmann and M.S. Vogelius, Amer. Math. Soc., Providence (2004). | MR 2091492 | Zbl 1072.35198
and ,[21] Pointwise polarization tensor bounds, and applications to voltage perturbations caused by thin inhomogeneities. Asymptot. Anal. 50 (2006) 175-204. | MR 2294598 | Zbl 1130.35011
and ,[22] Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction. Inverse Problems 14 (1998) 553-595. | MR 1629995 | Zbl 0916.35132
, and ,[23] The linear sampling method and the MUSIC algorithm. Inverse Problems 17 (2001) 591-595. | MR 1861470 | Zbl 0991.35105
,[24] Integral Equation Methods in Scattering Theory. John Wiley & Sons, New York (1983). | MR 700400 | Zbl 0522.35001
and ,[25] Mathematical Analysis and Numerical Methods for Science and Technology. Spectral Theory and Applications 3. Springer-Verlag, Berlin (1990). | MR 1064315 | Zbl 0766.47001
and ,[26] Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence. Arch. Rational Mech. Anal. 105 (1989) 299-326. | MR 973245 | Zbl 0684.35087
and ,[27] Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften 224. 2nd edition, Springer-Verlag, Berlin (1998). | Zbl 0562.35001
and ,[28] An asymptotic factorization method for inverse electromagnetic scattering in layered media. SIAM J. Appl. Math. 68 (2008) 1378-1403. | MR 2407129 | Zbl 1156.35339
,[29] Reciprocity gap music imaging for an inverse scattering problem in two-layered media. Inverse Probl. Imaging 3 (2009) 389-403. | MR 2557912 | Zbl 1194.78017
,[30] Reconstruction of thin tubular inclusions in three-dimensional domains using electrical impedance tomography. SIAM J. Imaging Sci. 3 (2010) 340-362. | MR 2679431 | Zbl 1193.78012
,[31] An asymptotic factorization method for inverse electromagnetic scattering in layered media II: A numerical study. Contemp. Math. 494 (2008) 61-79. | MR 2581766 | Zbl 1179.78063
and ,[32] MUSIC-characterization of small scatterers for normal measurement data. Inverse Problems 25 (2009) 075012. | MR 2519864 | Zbl 1167.35542
and ,[33] Multistatic response matrix of a 3-D inclusion in half space and MUSIC imaging. IEEE Trans. Antennas Propag. 55 (2007) 2598-2609
, , and ,[34] Matching of asymptotic expansions of solutions of boundary value problems, Translations of Mathematical Monographs 102, translated by V. Minachin, American Mathematical Society, Providence, RI (1992). | MR 1182791 | Zbl 0754.34002
,[35] The Factorization Method for Inverse Problems, Oxford Lecture Ser. Math. Appl. 36. Oxford University Press, New York (2008). | MR 2378253 | Zbl 1222.35001
and ,[36] Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000). | MR 1742312 | Zbl 0948.35001
,[37] Finite Element Methods for Maxwell's Equations. Numer. Math. Sci. Comput. Oxford University Press, New York (2003). | MR 2059447 | Zbl 1024.78009
,[38] H-convergence, Progress in Nonlinear Differential Equations and Their Applications 31, edited by A. Cherkaev and R. Kohn. Birkhäuser, Boston (1997). | MR 1493039 | Zbl 0920.35019
and ,[39] MUSIC-type imaging of a thin penetrable inclusion from its multi-static response matrix. Inverse Problems 25 (2009) 075002. | MR 2519854 | Zbl 1180.35571
and ,[40] Real and complex analysis. McGraw-Hill Book Co., New York (1966). | MR 210528 | Zbl 0278.26001
,[41] Functional analysis. McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York (1973). | MR 365062 | Zbl 0253.46001
,[42] Numerical methods for locating small dielectric inhomogeneities. Wave Motion 38 (2003) 189-206. | MR 1994816 | Zbl 1163.74456
,[43] Regularity theorems for Maxwell's equations. Math. Methods Appl. Sci. 3 (1981) 523-536. | MR 657071 | Zbl 0477.35020
,