Some energy conservative schemes for vibro-impacts of a beam on rigid obstacles
Pozzolini, C. ; Salaun, M.
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 45 (2011), p. 1163-1192 / Harvested from Numdam

Caused by the problem of unilateral contact during vibrations of satellite solar arrays, the aim of this paper is to better understand such a phenomenon. Therefore, it is studied here a simplified model composed by a beam moving between rigid obstacles. Our purpose is to describe and compare some families of fully discretized approximations and their properties, in the case of non-penetration Signorini's conditions. For this, starting from the works of Dumont and Paoli, we adapt to our beam model the singular dynamic method introduced by Renard. A particular emphasis is given in the use of a restitution coefficient in the impact law. Finally, various numerical results are presented and energy conservation capabilities of the schemes are investigated.

Publié le : 2011-01-01
DOI : https://doi.org/10.1051/m2an/2011008
Classification:  35L85,  65M12,  74H15,  74H45
@article{M2AN_2011__45_6_1163_0,
     author = {Pozzolini, C. and Salaun, M.},
     title = {Some energy conservative schemes for vibro-impacts of a beam on rigid obstacles},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {45},
     year = {2011},
     pages = {1163-1192},
     doi = {10.1051/m2an/2011008},
     mrnumber = {2833177},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2011__45_6_1163_0}
}
Pozzolini, C.; Salaun, M. Some energy conservative schemes for vibro-impacts of a beam on rigid obstacles. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 45 (2011) pp. 1163-1192. doi : 10.1051/m2an/2011008. http://gdmltest.u-ga.fr/item/M2AN_2011__45_6_1163_0/

[1] J. Ahn and D.E. Stewart, An Euler-Bernoulli beam with dynamic contact: discretization, convergence and numerical results. SIAM J. Numer. Anal. 43 (2005) 1455-1480. | MR 2182136 | Zbl 1145.35465

[2] N.J. Carpenter, Lagrange constraints for transient finite element surface contact. Internat. J. Numer. Methods Engrg. 32 (1991) 103-128. | Zbl 0763.73053

[3] P. Deuflhard, R. Krause and S. Ertel, A contact-stabilized Newmark method for dynamical contact problems. Internat. J. Numer. Methods Engrg. 73 (2007) 1274-1290. | MR 2392014 | Zbl 1169.74053

[4] Y. Dumont and L. Paoli, Vibrations of a beam between obstacles: convergence of a fully discretized approximation. ESAIM: M2AN 40 (2006) 705-734. | Numdam | MR 2274775 | Zbl 1106.74057

[5] Y. Dumont and L. Paoli, Numerical simulation of a model of vibrations with joint clearance. Int. J. Comput. Appl. Technol. 33 (2008) 41-53.

[6] P. Hauret and P. Le Tallec, Energy controlling time integration methods for nonlinear elastodynamics and low-velocity impact. Comput. Methods Appl. Mech. Eng. 195 (2006) 4890-4916. | MR 2240585 | Zbl 1177.74379

[7] H.B. Khenous, P. Laborde and Y. Renard, Mass redistribution method for finite element contact problems in elastodynamics. Eur. J. Mech. A. Solids 27 (2008) 918-932. | MR 2441269 | Zbl 1147.74044

[8] K. Kuttler and M. Shillor, Vibrations of a beam between two stops, Dynamics of Continuous, Discrete and Impulsive Systems, Series B. Applications and Algorithms 8 (2001) 93-110. | MR 1824287 | Zbl 1013.74033

[9] T.A. Laursen and V. Chawla, Design of energy conserving algorithms for frictionless dynamic contact problems. Internat. J. Numer. Methods Engrg. 40 (1997) 863-886. | MR 1430987 | Zbl 0886.73067

[10] T.A. Laursen and G.R. Love, Improved implicit integrators for transient impact problems-geometric admissibility within the conserving framework. Internat. J. Numer. Methods Engrg. 53 (2002) 245-274. | MR 1873995 | Zbl 1112.74526

[11] L. Paoli, Time discretization of vibro-impact. Philos. Trans. Roy. Soc. London A 359 (2001) 2405-2428. | MR 1884307 | Zbl 1067.70012

[12] L. Paoli and M. Schatzman, A numerical scheme for impact problems. I. The one-dimensional case. SIAM J. Numer. Anal. 40 (2002) 702-733. | MR 1921675 | Zbl 1021.65065

[13] L. Paoli and M. Schatzman, Numerical simulation of the dynamics of an impacting bar. Comput. Methods Appl. Mech. Eng. 196 (2007) 2839-2851. | MR 2325394 | Zbl 1119.74034

[14] A. Petrov and M. Schatzman, Viscolastodynamique monodimensionnelle avec conditions de Signorini. C. R. Acad. Sci. Paris, I 334 (2002) 983-988. | MR 1913722 | Zbl 1043.35119

[15] A. Petrov and M. Schatzman, A pseudodifferential linear complementarity problem related to a one dimensional viscoelastic model with Signorini condition. Arch. Rational Mech. Anal., to appear.

[16] Y. Renard, The singular dynamic method for constrained second order hyperbolic equations. Application to dynamic contact problems. J. Comput. Appl. Math. 234 (2010) 906-923. | MR 2606676 | Zbl pre05702050

[17] R.L. Taylor and P. Papadopoulos, On a finite element method for dynamic contact-impact problems. Internat. J. Numer. Methods Engrg. 36 (1993) 2123-2140. | Zbl 0774.73072