This paper proposes a linear discrete-time scheme for general nonlinear cross-diffusion systems. The scheme can be regarded as an extension of a linear scheme based on the nonlinear Chernoff formula for the degenerate parabolic equations, which proposed by Berger et al. [RAIRO Anal. Numer. 13 (1979) 297-312]. We analyze stability and convergence of the linear scheme. To this end, we apply the theory of reaction-diffusion system approximation. After discretizing the scheme in space, we obtain a versatile, easy to implement and efficient numerical scheme for the cross-diffusion systems. Numerical experiments are carried out to demonstrate the effectiveness of the proposed scheme.
@article{M2AN_2011__45_6_1141_0, author = {Murakawa, Hideki}, title = {A linear scheme to approximate nonlinear cross-diffusion systems}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {45}, year = {2011}, pages = {1141-1161}, doi = {10.1051/m2an/2011010}, mrnumber = {2833176}, zbl = {1269.65090}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2011__45_6_1141_0} }
Murakawa, Hideki. A linear scheme to approximate nonlinear cross-diffusion systems. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 45 (2011) pp. 1141-1161. doi : 10.1051/m2an/2011010. http://gdmltest.u-ga.fr/item/M2AN_2011__45_6_1141_0/
[1] Finite element approximation of a nonlinear cross-diffusion population model. Numer. Math. 98 (2004) 195-221. | MR 2092740 | Zbl 1058.65104
and ,[2] A moving mesh finite element method for the solution of two-dimensional Stefan problems. J. Comp. Phys. 168 (2001) 500-518. | MR 1826524 | Zbl 1040.65080
, and ,[3] A numerical method for solving the problem ut-Δf(u) = 0. RAIRO Anal. Numer. 13 (1979) 297-312. | Numdam | MR 555381 | Zbl 0426.65052
, and ,[4] Analyse Fonctionnelle. Masson (1983). | MR 697382 | Zbl 0511.46001
,[5] Analysis of a multidimensional parabolic population model with strong cross-diffusion. SIAM J. Math. Anal. 36 (2004) 301-322. | MR 2083864 | Zbl 1082.35075
and ,[6] Analysis of a parabolic cross-diffusion population model without self-diffusion. J. Differ. Equ. 224 (2006) 39-59. | MR 2220063 | Zbl 1096.35060
and ,[7] Analysis and numerical solution of a nonlinear cross-diffusion system arising in population dynamics. Rev. R. Acad. Cien. Ser. A Mat. 95 (2001) 281-295. | MR 1902432 | Zbl 1021.35047
, and ,[8] Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model. Numer. Math. 93 (2003) 655-673. | MR 1961883 | Zbl 1018.65115
, and ,[9] Some mathematical models for population dynamics that lead to segregation. Quart. Appl. Math. 32 (1974) 1-9. | MR 437132 | Zbl 0298.92006
,[10] Solution of porous medium type systems by linear approximation schemes. Numer. Math. 60 (1991) 407-427. | Zbl 0744.65060
and ,[11] Solution of nonlinear diffusion problems by linear approximation schemes. SIAM J. Numer. Anal. 30 (1993) 1703-1722. | Zbl 0792.65070
, and ,[12] Positive steady states for a prey-predator model with some nonlinear diffusion terms. J. Math. Anal. Appl. 323 (2006) 1387-1401. | MR 2260190 | Zbl 1160.35441
and ,[13] Further considerations on the statistical mechanics of biological associations. Bull. Math. Biophys. 21 (1959) 217-255. | MR 104525
,[14] Energy error estimates for a linear scheme to approximate nonlinear parabolic problems. Math. Mod. Numer. Anal. 21 (1987) 655-678. | Numdam | MR 921832 | Zbl 0635.65123
, and ,[15] Spatial segregation in competitive interaction-diffusion equations. J. Math. Biol. 9 (1980) 49-64. | MR 648845 | Zbl 0425.92010
and ,[16] Reaction-diffusion system approximation to degenerate parabolic systems. Nonlinearity 20 (2007) 2319-2332. | MR 2356112 | Zbl 1241.35122
,[17] A relation between cross-diffusion and reaction-diffusion. Discrete Contin. Dyn. Syst. S 5 (2012) 147-158. | MR 2836556 | Zbl 1255.35135
,[18] An efficient linear scheme to approximate parabolic free boundary problems: error estimates and implementation. Math. Comput. 51 (1988) 27-53. | MR 942142 | Zbl 0657.65131
and ,[19] The combined use of a nonlinear Chernoff formula with a regularization procedure for two-phase Stefan problems. Numer. Funct. Anal. Optim. 9 (1988) 1177-1192. | MR 936337 | Zbl 0629.35116
and ,[20] An adaptive finite element method for two-phase Stefan problems in two space dimensions. Part I: stability and error estimates. Math. Comput. 57 (1991) 73-108. | MR 1079028 | Zbl 0733.65087
, and ,[21] A fully discrete adaptive nonlinear Chernoff formula. SIAM J. Numer. Anal. 30 (1993) 991-1014. | MR 1231324 | Zbl 0805.65135
, and ,[22] A posteriori error estimation and adaptivity for degenerate parabolic problems. Math. Comput. 69 (1999) 1-24. | MR 1648399 | Zbl 0942.65111
, and ,[23] Strategy and stationary pattern in a three-species predator-prey model. J. Differ. Equ. 200 (2004) 245-273. | MR 2052615 | Zbl 1106.35016
and ,[24] Spatial segregation of interacting species. J. Theor. Biol. 79 (1979) 83-99. | MR 540951
, and ,[25] Navier-Stokes equation theory and numerical analysis. AMS Chelsea Publishing, Providence, RI (2001). | MR 1846644
,[26] Numerical aspects of parabolic free boundary and hysteresis problems. Lecture Notes in Mathematics 1584 (1994) 213-284. | MR 1321834 | Zbl 0819.35155
,