We study numerically the semiclassical limit for the nonlinear Schrödinger equation thanks to a modification of the Madelung transform due to Grenier. This approach allows for the presence of vacuum. Even if the mesh size and the time step do not depend on the Planck constant, we recover the position and current densities in the semiclassical limit, with a numerical rate of convergence in accordance with the theoretical results, before shocks appear in the limiting Euler equation. By using simple projections, the mass and the momentum of the solution are well preserved by the numerical scheme, while the variation of the energy is not negligible numerically. Experiments suggest that beyond the critical time for the Euler equation, Grenier's approach yields smooth but highly oscillatory terms.
@article{M2AN_2011__45_5_981_0, author = {Carles, R\'emi and Mohammadi, Bijan}, title = {Numerical aspects of the nonlinear Schr\"odinger equation in the semiclassical limit in a supercritical regime}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {45}, year = {2011}, pages = {981-1008}, doi = {10.1051/m2an/2011005}, mrnumber = {2817553}, zbl = {1269.65104}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2011__45_5_981_0} }
Carles, Rémi; Mohammadi, Bijan. Numerical aspects of the nonlinear Schrödinger equation in the semiclassical limit in a supercritical regime. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 45 (2011) pp. 981-1008. doi : 10.1051/m2an/2011005. http://gdmltest.u-ga.fr/item/M2AN_2011__45_5_981_0/
[1] Stability of trapped Bose-Einstein condensates. Phys. Rev. A 63 (2001) 043604.
, , and ,[2] Semi-classical limit of Schrödinger-Poisson equations in space dimension . J. Diff. Eq. 233 (2007) 241-275. | MR 2290279 | Zbl 1107.35018
and ,[3] Supercritical geometric optics for nonlinear Schrödinger equations. Arch. Rational Mech. Anal. 194 (2009) 315-347. | MR 2533930 | Zbl 1179.35302
and ,[4] WKB analysis for the Gross-Pitaevskii equation with non-trivial boundary conditions at infinity. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26 (2009) 959-977. | Numdam | MR 2526411 | Zbl 1167.35328
and ,[5] On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime. J. Comput. Phys. 175 (2002) 487-524. | MR 1880116 | Zbl 1006.65112
, and ,[6] Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semiclassical regimes. SIAM J. Sci. Comput. 25 (2003) 27-64. | MR 2047194 | Zbl 1038.65099
, and ,[7] A relaxation scheme for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 42 (2004) 934-952. | MR 2112787 | Zbl 1077.65103
,[8] Order estimates in time of splitting methods for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 40 (2002) 26-40. | MR 1921908 | Zbl 1026.65073
, and ,[9] A kinetic formulation for multi-branch entropy solutions of scalar conservation laws. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 15 (1998) 169-190. | Numdam | MR 1614638 | Zbl 0893.35068
and ,[10] Geometric optics and instability for semi-classical Schrödinger equations. Arch. Rational Mech. Anal. 183 (2007) 525-553. | MR 2278414 | Zbl 1134.35098
,[11] Semi-classical analysis for nonlinear Schrödinger equations. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2008). | MR 2406566 | Zbl 1153.35070
,[12] Numerical aspects of nonlinear Schrödinger equations in the presence of caustics. Math. Models Methods Appl. Sci. 17 (2007) 1531-1553. | MR 2359915 | Zbl 1162.35068
and ,[13] Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics 10. New York University Courant Institute of Mathematical Sciences, New York (2003). | MR 2002047 | Zbl 1055.35003
,[14] Dynamique des gaz à masse totale finie. Asymptotic Anal. 3 (1990) 215-220. | MR 1076448 | Zbl 0708.76110
,[15] Geometric optics and boundary layers for nonlinear Schrödinger equations. Comm. Math. Phys. 288 (2009) 503-546. | MR 2500991 | Zbl 1179.35303
and ,[16] Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71 (1999) 463-512.
, , and ,[17] An asymptotic preserving scheme for the Schrödinger equation in the semiclassical limit. C.R. Math. Acad. Sci. Paris 345 (2007) 531-536. | MR 2375117 | Zbl 1128.65064
, and ,[18] On the time splitting spectral method for the complex Ginzburg-Landau equation in the large time and space scale limit. SIAM J. Sci. Comput. 30 (2008) 2466-2487. | MR 2429475 | Zbl 1176.35170
, and ,[19] Oscillatory integrals, Lagrange immersions and unfolding of singularities. Comm. Pure Appl. Math. 27 (1974) 207-281. | MR 405513 | Zbl 0285.35010
,[20] Atomic Bose-Einstein condensation with three-body intercations and collective excitations. J. Phys. B 33 (2000) 4053-4067.
, , and ,[21] The quantum hydrodynamic model for semiconductor devices. SIAM J. Appl. Math. 54 (1994) 409-427. | MR 1265234 | Zbl 0815.35111
,[22] Remarques sur l'analyse semi-classique de l'équation de Schrödinger non linéaire, Séminaire sur les Équations aux Dérivées Partielles, 1992-1993. École Polytech., Palaiseau (1993), http://www.numdam.org/numdam-bin/fitem?id=SEDP_1992-1993____A13_0www.numdam.org, pp. Exp. No. XIII, 13. | Zbl 0874.35111
,[23] Homogenization limits and Wigner transforms. Comm. Pure Appl. Math. 50 (1997) 323-379. | MR 1438151 | Zbl 0881.35099
, , and ,[24] On a class of nonlinear Schrödinger equations. I The Cauchy problem, general case. J. Funct. Anal. 32 (1979) 1-32. | MR 533218 | Zbl 0396.35028
and ,[25] Using -branch entropy solutions for multivalued geometric optics computations. J. Comput. Phys. 180 (2002) 155-182. | MR 1913091 | Zbl 0999.78003
,[26] A case study on the reliability of multiphase WKB approximation for the one-dimensional Schrödinger equation, Numerical methods for hyperbolic and kinetic problems, IRMA Lect. Math. Theor. Phys. 7. Eur. Math. Soc., Zürich (2005) 131-141. | MR 2186370 | Zbl 1210.81038
,[27] Semiclassical limit of the nonlinear Schrödinger equation in small time. Proc. Amer. Math. Soc. 126 (1998) 523-530. | MR 1425123 | Zbl 0910.35115
,[28] Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21 (1999) 441-454. | MR 1718639 | Zbl 0947.82008
,[29] Nonlinear aspects of the theory of Bose-Einstein condensates. Nonlinearity 14 (2001) R25-R62. | MR 1862803 | Zbl 1037.82031
and ,[30] Semiclassical limit and well-posedness of nonlinear Schrödinger-Poisson systems. Electron. J. Diff. Eq. (2003) 17 (electronic). | Zbl 1055.35111
and ,[31] Semiclassical limit of the nonlinear Schrödinger-Poisson equation with subcritical initial data. Methods Appl. Anal. 9 (2002) 517-531. | MR 2006603 | Zbl 1166.35374
and ,[32] Quanten theorie in Hydrodynamischer Form. Zeit. Physik 40 (1927) 322. | JFM 52.0969.06
,[33] Sur la solution à support compact de l'équation d'Euler compressible. Japan J. Appl. Math. 3 (1986) 249-257. | MR 899222 | Zbl 0637.76065
, and ,[34] Numerical approximation of quadratic observables of Schrödinger-type equations in the semi-classical limit. Numer. Math. 81 (1999) 595-630. | MR 1675220 | Zbl 0928.65109
, and ,[35] Local existence and WKB approximation of solutions to Schrödinger-Poisson system in the two-dimensional whole space. Comm. Partial Differential Equations 35 (2010) 2253-2278. | MR 2763355 | Zbl 1232.35155
,[36] Semiclassical approximation in quantum mechanics, Mathematical Physics and Applied Mathematics 7. Translated from the Russian by J. Niederle and J. Tolar, Contemporary Mathematics 5. D. Reidel Publishing Co., Dordrecht (1981). | MR 634377 | Zbl 0458.58001
and ,[37] Remarks on the well-posedness of the nonlinear Cauchy problem, Geometric analysis of PDE and several complex variables, Contemp. Math. 368. Amer. Math. Soc., Providence, RI (2005) 337-356. | MR 2127041 | Zbl 1071.35074
,[38] Liquid light condensates. Phys. Rev. E 65 (2002) 066604.
, , , and ,[39] Pratique de la simulation numérique. Dunod, Paris (2003).
and ,[40] Numerical optimization. 2d edition, Springer Series in Operations Research and Financial Engineering, Springer, New York (2006). | MR 2244940 | Zbl 0930.65067
and ,[41] Bose-Einstein condensation, International Series of Monographs on Physics 116. The Clarendon Press Oxford University Press, Oxford (2003). | MR 2012737 | Zbl 1110.82002
and ,[42] Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in . Amer. J. Math. 129 (2007) 1-60. | MR 2288737 | Zbl 1160.35067
and ,[43] Introduction to applied mathematics. Applied Mathematical Sciences, Wellesley-Cambridge Press, New York (1986). | MR 870634 | Zbl 0618.00015
,[44] The nonlinear Schrödinger equation, self-focusing and wave collapse. Springer-Verlag, New York (1999). | MR 1696311 | Zbl 0928.35157
and ,[45] Partial differential equations. III, Applied Mathematical Sciences 117. Nonlinear equations. Springer-Verlag, New York (1997). | MR 1477408 | Zbl 1206.35004
,[46] Instabilities for supercritical Schrödinger equations in analytic manifolds. J. Diff. Eq. 245 (2008) 249-280. | MR 2422717 | Zbl 1157.35107
,[47] Blowup of smooth solutions of the compressible Navier-Stokes equation with compact density. Comm. Pure Appl. Math. 51 (1998) 229-240. | MR 1488513 | Zbl 0937.35134
,[48] On the complete integrability of a nonlinear Schrödinger equation. Theor. Math. Phys. 19 (1974) 551-559. | Zbl 0298.35016
and ,[49] Interaction between solitons in a stable medium. Sov. Phys. JETP 37 (1973) 823-828.
and ,