Numerical aspects of the nonlinear Schrödinger equation in the semiclassical limit in a supercritical regime
Carles, Rémi ; Mohammadi, Bijan
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 45 (2011), p. 981-1008 / Harvested from Numdam

We study numerically the semiclassical limit for the nonlinear Schrödinger equation thanks to a modification of the Madelung transform due to Grenier. This approach allows for the presence of vacuum. Even if the mesh size and the time step do not depend on the Planck constant, we recover the position and current densities in the semiclassical limit, with a numerical rate of convergence in accordance with the theoretical results, before shocks appear in the limiting Euler equation. By using simple projections, the mass and the momentum of the solution are well preserved by the numerical scheme, while the variation of the energy is not negligible numerically. Experiments suggest that beyond the critical time for the Euler equation, Grenier's approach yields smooth but highly oscillatory terms.

Publié le : 2011-01-01
DOI : https://doi.org/10.1051/m2an/2011005
Classification:  35Q55,  65M99,  76A02,  81Q20,  82D50
@article{M2AN_2011__45_5_981_0,
     author = {Carles, R\'emi and Mohammadi, Bijan},
     title = {Numerical aspects of the nonlinear Schr\"odinger equation in the semiclassical limit in a supercritical regime},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {45},
     year = {2011},
     pages = {981-1008},
     doi = {10.1051/m2an/2011005},
     mrnumber = {2817553},
     zbl = {1269.65104},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2011__45_5_981_0}
}
Carles, Rémi; Mohammadi, Bijan. Numerical aspects of the nonlinear Schrödinger equation in the semiclassical limit in a supercritical regime. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 45 (2011) pp. 981-1008. doi : 10.1051/m2an/2011005. http://gdmltest.u-ga.fr/item/M2AN_2011__45_5_981_0/

[1] F.Kh. Abdullaev, A. Gammal, L. Tomio and T. Frederico, Stability of trapped Bose-Einstein condensates. Phys. Rev. A 63 (2001) 043604.

[2] T. Alazard and R. Carles, Semi-classical limit of Schrödinger-Poisson equations in space dimension n3. J. Diff. Eq. 233 (2007) 241-275. | MR 2290279 | Zbl 1107.35018

[3] T. Alazard and R. Carles, Supercritical geometric optics for nonlinear Schrödinger equations. Arch. Rational Mech. Anal. 194 (2009) 315-347. | MR 2533930 | Zbl 1179.35302

[4] T. Alazard and R. Carles, WKB analysis for the Gross-Pitaevskii equation with non-trivial boundary conditions at infinity. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26 (2009) 959-977. | Numdam | MR 2526411 | Zbl 1167.35328

[5] W. Bao, S. Jin and P.A. Markowich, On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime. J. Comput. Phys. 175 (2002) 487-524. | MR 1880116 | Zbl 1006.65112

[6] W. Bao, S. Jin and P.A. Markowich, Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semiclassical regimes. SIAM J. Sci. Comput. 25 (2003) 27-64. | MR 2047194 | Zbl 1038.65099

[7] C. Besse, A relaxation scheme for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 42 (2004) 934-952. | MR 2112787 | Zbl 1077.65103

[8] C. Besse, B. Bidégaray and S. Descombes, Order estimates in time of splitting methods for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 40 (2002) 26-40. | MR 1921908 | Zbl 1026.65073

[9] Y. Brenier and L. Corrias, A kinetic formulation for multi-branch entropy solutions of scalar conservation laws. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 15 (1998) 169-190. | Numdam | MR 1614638 | Zbl 0893.35068

[10] R. Carles, Geometric optics and instability for semi-classical Schrödinger equations. Arch. Rational Mech. Anal. 183 (2007) 525-553. | MR 2278414 | Zbl 1134.35098

[11] R. Carles, Semi-classical analysis for nonlinear Schrödinger equations. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2008). | MR 2406566 | Zbl 1153.35070

[12] R. Carles and L. Gosse, Numerical aspects of nonlinear Schrödinger equations in the presence of caustics. Math. Models Methods Appl. Sci. 17 (2007) 1531-1553. | MR 2359915 | Zbl 1162.35068

[13] T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics 10. New York University Courant Institute of Mathematical Sciences, New York (2003). | MR 2002047 | Zbl 1055.35003

[14] J.-Y. Chemin, Dynamique des gaz à masse totale finie. Asymptotic Anal. 3 (1990) 215-220. | MR 1076448 | Zbl 0708.76110

[15] D. Chiron and F. Rousset, Geometric optics and boundary layers for nonlinear Schrödinger equations. Comm. Math. Phys. 288 (2009) 503-546. | MR 2500991 | Zbl 1179.35303

[16] F. Dalfovo, S. Giorgini, L.P. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71 (1999) 463-512.

[17] P. Degond, S. Gallego and F. Méhats, An asymptotic preserving scheme for the Schrödinger equation in the semiclassical limit. C.R. Math. Acad. Sci. Paris 345 (2007) 531-536. | MR 2375117 | Zbl 1128.65064

[18] P. Degond, S. Jin and M. Tang, On the time splitting spectral method for the complex Ginzburg-Landau equation in the large time and space scale limit. SIAM J. Sci. Comput. 30 (2008) 2466-2487. | MR 2429475 | Zbl 1176.35170

[19] J.J. Duistermaat, Oscillatory integrals, Lagrange immersions and unfolding of singularities. Comm. Pure Appl. Math. 27 (1974) 207-281. | MR 405513 | Zbl 0285.35010

[20] A. Gammal, T. Frederico, L. Tomio and Ph. Chomaz, Atomic Bose-Einstein condensation with three-body intercations and collective excitations. J. Phys. B 33 (2000) 4053-4067.

[21] C.L. Gardner, The quantum hydrodynamic model for semiconductor devices. SIAM J. Appl. Math. 54 (1994) 409-427. | MR 1265234 | Zbl 0815.35111

[22] P. Gérard, Remarques sur l'analyse semi-classique de l'équation de Schrödinger non linéaire, Séminaire sur les Équations aux Dérivées Partielles, 1992-1993. École Polytech., Palaiseau (1993), http://www.numdam.org/numdam-bin/fitem?id=SEDP_1992-1993____A13_0www.numdam.org, pp. Exp. No. XIII, 13. | Zbl 0874.35111

[23] P. Gérard, P.A. Markowich, N.J. Mauser and F. Poupaud, Homogenization limits and Wigner transforms. Comm. Pure Appl. Math. 50 (1997) 323-379. | MR 1438151 | Zbl 0881.35099

[24] J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. I The Cauchy problem, general case. J. Funct. Anal. 32 (1979) 1-32. | MR 533218 | Zbl 0396.35028

[25] L. Gosse, Using K-branch entropy solutions for multivalued geometric optics computations. J. Comput. Phys. 180 (2002) 155-182. | MR 1913091 | Zbl 0999.78003

[26] L. Gosse, A case study on the reliability of multiphase WKB approximation for the one-dimensional Schrödinger equation, Numerical methods for hyperbolic and kinetic problems, IRMA Lect. Math. Theor. Phys. 7. Eur. Math. Soc., Zürich (2005) 131-141. | MR 2186370 | Zbl 1210.81038

[27] E. Grenier, Semiclassical limit of the nonlinear Schrödinger equation in small time. Proc. Amer. Math. Soc. 126 (1998) 523-530. | MR 1425123 | Zbl 0910.35115

[28] S. Jin, Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21 (1999) 441-454. | MR 1718639 | Zbl 0947.82008

[29] C. Josserand and Y. Pomeau, Nonlinear aspects of the theory of Bose-Einstein condensates. Nonlinearity 14 (2001) R25-R62. | MR 1862803 | Zbl 1037.82031

[30] H. Li and C.-K. Lin, Semiclassical limit and well-posedness of nonlinear Schrödinger-Poisson systems. Electron. J. Diff. Eq. (2003) 17 (electronic). | Zbl 1055.35111

[31] H. Liu and E. Tadmor, Semiclassical limit of the nonlinear Schrödinger-Poisson equation with subcritical initial data. Methods Appl. Anal. 9 (2002) 517-531. | MR 2006603 | Zbl 1166.35374

[32] E. Madelung, Quanten theorie in Hydrodynamischer Form. Zeit. Physik 40 (1927) 322. | JFM 52.0969.06

[33] T. Makino, S. Ukai and S. Kawashima, Sur la solution à support compact de l'équation d'Euler compressible. Japan J. Appl. Math. 3 (1986) 249-257. | MR 899222 | Zbl 0637.76065

[34] P.A. Markowich, P. Pietra and C. Pohl, Numerical approximation of quadratic observables of Schrödinger-type equations in the semi-classical limit. Numer. Math. 81 (1999) 595-630. | MR 1675220 | Zbl 0928.65109

[35] S. Masaki, Local existence and WKB approximation of solutions to Schrödinger-Poisson system in the two-dimensional whole space. Comm. Partial Differential Equations 35 (2010) 2253-2278. | MR 2763355 | Zbl 1232.35155

[36] V.P. Maslov and M.V. Fedoriuk, Semiclassical approximation in quantum mechanics, Mathematical Physics and Applied Mathematics 7. Translated from the Russian by J. Niederle and J. Tolar, Contemporary Mathematics 5. D. Reidel Publishing Co., Dordrecht (1981). | MR 634377 | Zbl 0458.58001

[37] G. Métivier, Remarks on the well-posedness of the nonlinear Cauchy problem, Geometric analysis of PDE and several complex variables, Contemp. Math. 368. Amer. Math. Soc., Providence, RI (2005) 337-356. | MR 2127041 | Zbl 1071.35074

[38] H. Michinel, J. Campo-Táboas, R. García-Fernández, J.R. Salgueiro and M.L. Quiroga-Teixeiro, Liquid light condensates. Phys. Rev. E 65 (2002) 066604.

[39] B. Mohammadi and J.H. Saiac, Pratique de la simulation numérique. Dunod, Paris (2003).

[40] J. Nocedal and S.J. Wright, Numerical optimization. 2d edition, Springer Series in Operations Research and Financial Engineering, Springer, New York (2006). | MR 2244940 | Zbl 0930.65067

[41] L. Pitaevskii and S. Stringari, Bose-Einstein condensation, International Series of Monographs on Physics 116. The Clarendon Press Oxford University Press, Oxford (2003). | MR 2012737 | Zbl 1110.82002

[42] E. Ryckman and M. Visan, Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in 1+4 . Amer. J. Math. 129 (2007) 1-60. | MR 2288737 | Zbl 1160.35067

[43] G. Strang, Introduction to applied mathematics. Applied Mathematical Sciences, Wellesley-Cambridge Press, New York (1986). | MR 870634 | Zbl 0618.00015

[44] C. Sulem and P.-L. Sulem, The nonlinear Schrödinger equation, self-focusing and wave collapse. Springer-Verlag, New York (1999). | MR 1696311 | Zbl 0928.35157

[45] M. Taylor, Partial differential equations. III, Applied Mathematical Sciences 117. Nonlinear equations. Springer-Verlag, New York (1997). | MR 1477408 | Zbl 1206.35004

[46] L. Thomann, Instabilities for supercritical Schrödinger equations in analytic manifolds. J. Diff. Eq. 245 (2008) 249-280. | MR 2422717 | Zbl 1157.35107

[47] Z. Xin, Blowup of smooth solutions of the compressible Navier-Stokes equation with compact density. Comm. Pure Appl. Math. 51 (1998) 229-240. | MR 1488513 | Zbl 0937.35134

[48] V.E. Zakharov and S.V. Manakov, On the complete integrability of a nonlinear Schrödinger equation. Theor. Math. Phys. 19 (1974) 551-559. | Zbl 0298.35016

[49] V.E. Zakharov and A.B. Shabat, Interaction between solitons in a stable medium. Sov. Phys. JETP 37 (1973) 823-828.