We derive an optimal lower bound of the interpolation error for linear finite elements on a bounded two-dimensional domain. Using the supercloseness between the linear interpolant of the true solution of an elliptic problem and its finite element solution on uniform partitions, we further obtain two-sided a priori bounds of the discretization error by means of the interpolation error. Two-sided bounds for bilinear finite elements are given as well. Numerical tests illustrate our theoretical analysis.
@article{M2AN_2011__45_5_915_0, author = {K\v r\'\i \v zek, Michal and Roos, Hans-Goerg and Chen, Wei}, title = {Two-sided bounds of the discretization error for finite elements}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {45}, year = {2011}, pages = {915-924}, doi = {10.1051/m2an/2011003}, mrnumber = {2817550}, zbl = {1269.65113}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2011__45_5_915_0} }
Křížek, Michal; Roos, Hans-Goerg; Chen, Wei. Two-sided bounds of the discretization error for finite elements. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 45 (2011) pp. 915-924. doi : 10.1051/m2an/2011003. http://gdmltest.u-ga.fr/item/M2AN_2011__45_5_915_0/
[1] Gradient superconvergence on uniform simplicial partitions of polytopes. IMA J. Numer. Anal. 23 (2003) 489-505. | MR 1987941 | Zbl 1042.65081
and ,[2] What is the smallest possible constant in Céa's lemma? Appl. Math. 51 (2006) 128-144. | Zbl 1164.65495
and ,[3] Lower bounds for the interpolation error for finite elements. Mathematics in Practice and Theory 39 (2009) 159-164 (in Chinese). | MR 2599063 | Zbl 1212.41001
and ,[4] The finite element method for elliptic problems. North-Holland, Amsterdam (1978). | MR 520174 | Zbl 0511.65078
,[5] Superconvergence analysis of the Galerkin FEM for a singularly perturbed convection-diffusion problems with characteristic layers. Numer. Methods Partial Differ. Equ. 24 (2008) 144-164. | MR 2371352 | Zbl 1133.65090
and ,[6] Numerical treatment of partial differential equations. Springer-Verlag, Berlin, Heidelberg (2007). | MR 2362757 | Zbl 1180.65147
, and ,[7] Two-sided a posteriori error estimates for linear elliptic problems with mixed boundary conditions. Appl. Math. 52 (2007) 235-249. | MR 2316154 | Zbl 1164.65485
,[8] Finite element approximation of variational problems and applications. Longman Scientific & Technical, Harlow (1990). | Zbl 0708.65106
and ,[9] Mathematical and Numerical Modelling in Electrical Engineering: Theory and Applications. Kluwer, Dordrecht (1996). | MR 1431889 | Zbl 0859.65128
and ,[10] Finite element methods: Accuracy and improvement. Science Press, Beijing (2006).
and ,[11] Introduction aux méthodes des éléments finis. Mir, Moscow (1985). | Zbl 0645.65073
and ,[12] Mathematical theory of elastic and elasto-plastic bodies: An introduction. Elsevier, Amsterdam (1981). | Zbl 0448.73009
and ,[13] An investigation of the rate of convergence of variational-difference schemes for second order elliptic equations in a two-dimensional region with smooth boundary. Ž. Vyčisl. Mat. i Mat. Fyz. 9 (1969) 1102-1120. | MR 295599 | Zbl 0234.65093
and ,[14] An analysis of the finite element method. Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1973). | MR 443377 | Zbl 0356.65096
and ,[15] A review of a posteriori error estimation and adaptive mesh-refinement techniques. John Wiley & Sons, Chichester, Teubner, Stuttgart (1996). | Zbl 0853.65108
,[16] Superconvergence in Galerkin finite element methods, Lect. Notes in Math. 1605. Springer, Berlin (1995). | MR 1439050 | Zbl 0826.65092
,[17] Analysis of recovery type a posteriori error estimation for mildly structured grids. Math. Comp. 73 (2004) 1139-1152. | MR 2047081 | Zbl 1050.65103
and ,[18] Superconvergence analysis and a posteriori error estimation in finite element methods. Science Press, Beijing (2008).
,