Involutive formulation and simulation for electroneutral microfluids
Mohammadi, Bijan ; Tuomela, Jukka
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 45 (2011), p. 901-913 / Harvested from Numdam

We study a microfluidic flow model where the movement of several charged species is coupled with electric field and the motion of ambient fluid. The main numerical difficulty in this model is the net charge neutrality assumption which makes the system essentially overdetermined. Hence we propose to use the involutive and the associated augmented form of the system in numerical computations. Numerical experiments on electrophoresis and stacking show that the completed system significantly improves electroneutrality constraint conservation and recovers analytical results while a direct implementation of the initial model fails.

Publié le : 2011-01-01
DOI : https://doi.org/10.1051/m2an/2011001
Classification:  35K55,  58J10,  65M60,  76W05
@article{M2AN_2011__45_5_901_0,
     author = {Mohammadi, Bijan and Tuomela, Jukka},
     title = {Involutive formulation and simulation for electroneutral microfluids},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {45},
     year = {2011},
     pages = {901-913},
     doi = {10.1051/m2an/2011001},
     mrnumber = {2817549},
     zbl = {1267.76132},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2011__45_5_901_0}
}
Mohammadi, Bijan; Tuomela, Jukka. Involutive formulation and simulation for electroneutral microfluids. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 45 (2011) pp. 901-913. doi : 10.1051/m2an/2011001. http://gdmltest.u-ga.fr/item/M2AN_2011__45_5_901_0/

[1] M.S. Agranovich, Elliptic boundary problems, in Partial differential equations IX, M.S. Agranovich, Y.V. Egorov and M.A. Shubin Eds., Encyclopaedia of Mathematical Sciences 79, Springer (1997) 1-144. | MR 1481214 | Zbl 0855.00007

[2] R. Brahadwaj, B. Mohammadi and J. Santiago, Design and optimization of on-chip capillary electrophoresis. Electrophoresis J. 23 (2002) 2729-2744.

[3] G. Bruin, Recent developments in electrokinetically driven analysis of microfabricated devices. Electrophoresis 21 (2000) 3931-3951.

[4] A. Douglis and L. Nirenberg, Interior estimates for elliptic systems of partial differential equations. Comm. Pure Appl. Math. 8 (1955) 503-538. | MR 75417 | Zbl 0066.08002

[5] P. Dudnikov and S. Samborski, Linear overdetermined systems of partial differential equations, in Partial Differential Equations VIII, M. Shubin Ed., Encyclopaedia of Mathematical Sciences 65, Springer (1996) 1-86. | MR 1401123 | Zbl 0831.35113

[6] S.D. Eidelman, Parabolic equations, in Partial differential equations VI, M.A. Shubin Ed., Encyclopaedia of Mathematical Sciences 63, Springer (1994) 201-313. | MR 1313734 | Zbl 0801.00007

[7] M.G. El Hak, The MEMS Handbook, Handbook series for Mechanical Engineering 7. CRC Press (2002). | Zbl 1060.74001

[8] K. Krupchyk, W. Seiler and J. Tuomela, Overdetermined elliptic systems. Found. Comp. Math. 6 (2006) 309-351. | MR 2251500 | Zbl 1101.35061

[9] K. Krupchyk and J. Tuomela, Completion of overdetermined parabolic PDEs. J. Symb. Comput. 43 (2008) 153-167. | MR 2392875 | Zbl 1158.35393

[10] H. Lin, B. Storey, M. Oddy, C.-H. Chen and J. Santiago, Instability of electrokinetic microchannel flows with conductivity gradients. Phys. Fluids 16 (2004) 1876-1899. | Zbl 1186.76326

[11] M. Marden, On the zeros of certain rational functions. Trans. Amer. Math. Soc. 32 (1930) 658-668. | JFM 56.0307.03 | MR 1501557

[12] B. Mohammadi and J. Tuomela, Simplifying numerical solution of constrained PDE systems through involutive completion. ESAIM: M2AN 39 (2005) 909-929. | Numdam | MR 2178567 | Zbl 1078.35010

[13] B. Mohammadi and J. Tuomela, Involutive upgrades of Navier-Stokes solvers. Int. J. Comput. Fluid Dyn. 23 (2009) 439-447. | MR 2560878 | Zbl 1172.76044

[14] M. Oddy and J. Santiago, Multiple-species model for electrokinetic instability. Phys. Fluids 17 (2005) 1245-1278. | Zbl 1187.76387

[15] B. Perthame, Transport equations in biology, Frontiers in Mathematics. Birkhäuser, Basel (2007). | MR 2270822 | Zbl 1185.92006

[16] T. Poinsot and D. Veynante, Theoretical and Numerical Combustion. 2nd edn., R.T. Edwards, Inc. (2005).

[17] J.F. Pommaret, Systems of Partial Differential Equations and Lie Pseudogroups. Mathematics and its applications 14. Gordon and Breach Science Publishers (1978). | MR 517402 | Zbl 0401.58006

[18] R.F. Probstein, Physicochemical Hydrodynamics. Wiley (1995).

[19] W. Seiler, Involution - The Formal Theory of Differential Equations and its Applications in Computer Algebra. Algorithms and Computation in Mathematics 24. Springer, 2010. | MR 2573958 | Zbl 1205.35003

[20] V.A. Solonnikov, On boundary value problems for linear parabolic systems of differential equations of general form. Trudy Mat. Inst. Steklov. 83 (1965) 3-163 (in Russian). | MR 211083 | Zbl 0164.12502

[21] D. Spencer, Overdetermined systems of linear partial differential equations. Bull. Amer. Math. Soc. 75 (1969) 179-239. | MR 242200 | Zbl 0185.33801

[22] T. Squires and S.R. Quake, Instability of electrokinetic microchannel flows with conductivity gradients. Rev. Mod. Phys. 77 (2005) 977-1026. | Zbl 1186.76326