As an example of a simple constrained geometric non-linear wave equation, we study a numerical approximation of the Maxwell Klein Gordon equation. We consider an existing constraint preserving semi-discrete scheme based on finite elements and prove its convergence in space dimension 2 for initial data of finite energy.
@article{M2AN_2011__45_4_739_0, author = {Christiansen, Snorre H. and Scheid, Claire}, title = {Convergence of a constrained finite element discretization of the Maxwell Klein Gordon equation}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {45}, year = {2011}, pages = {739-760}, doi = {10.1051/m2an/2010100}, mrnumber = {2804657}, zbl = {1282.78036}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2011__45_4_739_0} }
Christiansen, Snorre H.; Scheid, Claire. Convergence of a constrained finite element discretization of the Maxwell Klein Gordon equation. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 45 (2011) pp. 739-760. doi : 10.1051/m2an/2010100. http://gdmltest.u-ga.fr/item/M2AN_2011__45_4_739_0/
[1] Sobolev Spaces - Pure and Applied Mathematics Series. Second edition, Elsevier (2003). | MR 2424078 | Zbl 1098.46001
and ,[2] Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15 (2006) 1-155. | MR 2269741 | Zbl 1185.65204
, and ,[3] Finite element approximations of wave maps into spheres. SIAM J. Numer. Anal. 46 (2007) 61-87. | MR 2377255 | Zbl 1160.65050
, and ,[4] Mixed finite elements and the complex of Whitney forms, in The mathematics of finite elements and applications VI, J. Whiteman Ed., Academic Press, London (1988) 137-144. | MR 956893 | Zbl 0692.65053
,[5] On the stability of the L2 projection in H1(Ω). Math. Comput. 71 (2001) 147-156. | MR 1862992 | Zbl 0989.65122
, and ,[6] The Mathematical Theory of Finite Element Methods. Second edition, Springer (2002). | MR 1894376 | Zbl 0804.65101
and ,[7] Résolution des équations intégrales pour la diffraction d'ondes accoustiques et électromagnétiques. Ph.D. thesis, École polytechnique, France (2002).
,[8] Discrete Fredholm properties and convergence estimates for the Electric Field Integral Equation. Math. Comput. 73 (2004) 143-167. | MR 2034114 | Zbl 1034.65089
,[9] Constraint preserving schemes for gauge invariant wave equations. SIAM J. Sci. Comput. 31 (2009) 1448-1469. | MR 2486838 | Zbl 1202.65122
,[10] On constraint preservation in numerical simulations of Yang-Mills equations. SIAM J. Sci. Comput. 28 (2006) 75-101. | MR 2219288 | Zbl 1115.70003
and ,[11] Smoothed projections in finite element exterior calculus. Math. Comput. 77 (2007) 813-829. | MR 2373181 | Zbl 1140.65081
and ,[12] Basic error estimates for elliptic problems, in Handbook of numerical analysis II, P.G. Ciarlet and J.-L. Lions Eds., North Holland (1991) 17-351. | MR 1115237 | Zbl 0875.65086
,[13] The stability in Lp and W1p of the L2-projection onto finite element function spaces. Math. Comput. 48 (1987) 521-532. | MR 878688 | Zbl 0637.41034
and ,[14] The stability in Lq of the L2-projection into finite element function spaces. Numer. Math. 23 (1975) 193-197. | MR 383789 | Zbl 0297.41022
, and ,[15] Discrete vector potential representation of a divergence free vector field in three-dimensional domains: Numerical analysis of a model problem. SIAM J. Numer. Anal. 27 (1990) 1103-1141. | MR 1061122 | Zbl 0717.65086
,[16] The Cauchy problem for coupled Yang-Mills and scalar fields in the temporal gauge. Commun. Math. Phys. 82 (1981) 1-28. | MR 638511 | Zbl 0486.35048
and ,[17] Finite Element approximation of the Navier-Stokes equations. Springer-Verlag, Berlin (1986). | MR 548867 | Zbl 0413.65081
and ,[18] On a discrete compactness property for the Nédélec finite elements. J. Fac. Sci. Univ. Tokyo, Sect. 1A Math. 36 (1989) 479-490. | MR 1039483 | Zbl 0698.65067
,[19] Mathematical challenges of general relativity. Rend. Mat. Appl. 27 (2007) 105-122. | MR 2361024 | Zbl 1215.35157
,[20] On the Maxwell-Klein-Gordon equation with finite energy. Duke Math. J. 74 (1994) 19-44. | MR 1271462 | Zbl 0818.35123
and ,[21] Finite energy solutions of the Yang-Mills equations in R3+1. Ann. Math. 142 (1995) 39-119. | MR 1338675 | Zbl 0827.53056
and ,[22] Analysis Graduate Studies in Mathematics 14. Second edition, AMS (2001). | MR 1817225 | Zbl 0966.26002
and ,[23] Problèmes aux limites non homogènes et applications 1. Dunod, Paris (1968). | MR 247243 | Zbl 0165.10801
and ,[24] Uniqueness of Finite Energy solutions for Maxwell-Dirac and Maxwell-Klein-Gordon equations. Commun. Math. Phys. 243 (2003) 123-136. | MR 2020223 | Zbl 1029.35199
and ,[25] Finite Element Methods for Maxwell's Equations. Oxford Science Publication (2003). | Zbl 1024.78009
,[26] A posteriori error estimates for Maxwell equations. Math. Comput. 77 (2008) 633-649. | Zbl 1136.78016
,[27] Finite-energy global well-posedness of the Maxwell-Klein-Gordon system in Lorenz gauge. Commun. Partial Differ. Equ. 35 (2010) 1029-1057. | MR 2753627 | Zbl 1193.35164
and ,[28] Geometric wave equations, Courant Lecture Notes in Mathematics 2. New York University, Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence (1998). | MR 1674843 | Zbl 0993.35001
and ,[29] On Dirichlet Boundary Value Problem. Springer-Verlag (1972). | Zbl 0242.35027
,[30] Compact sets in the space Lp(0,T;B). Ann. Mat. Pura. Appl. 146 (1987) 65-96. | MR 916688 | Zbl 0629.46031
,[31] Local well-posedness of the Yang-Mills equation in the temporal gauge below the energy norm. J. Differ. Equ. 189 (2003) 366-382. | MR 1964470 | Zbl 1017.81037
,