In this article, we investigate numerical schemes for solving a three component Cahn-Hilliard model. The space discretization is performed by using a Galerkin formulation and the finite element method. Concerning the time discretization, the main difficulty is to write a scheme ensuring, at the discrete level, the decrease of the free energy and thus the stability of the method. We study three different schemes and prove existence and convergence theorems. Theoretical results are illustrated by various numerical examples showing that the new semi-implicit discretization that we propose seems to be a good compromise between robustness and accuracy.
@article{M2AN_2011__45_4_697_0, author = {Boyer, Franck and Minjeaud, Sebastian}, title = {Numerical schemes for a three component Cahn-Hilliard model}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {45}, year = {2011}, pages = {697-738}, doi = {10.1051/m2an/2010072}, mrnumber = {2804656}, zbl = {1267.76127}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2011__45_4_697_0} }
Boyer, Franck; Minjeaud, Sebastian. Numerical schemes for a three component Cahn-Hilliard model. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 45 (2011) pp. 697-738. doi : 10.1051/m2an/2010072. http://gdmltest.u-ga.fr/item/M2AN_2011__45_4_697_0/
[1] An improved error bound for a finite element approximation of a model for phase separation of a multi-component alloy. IMA J. Numer. Anal. 19 (1999) 147-168. | MR 1670685 | Zbl 0970.65101
and ,[2] Finite element approximation of an Allen-Cahn/Cahn-Hilliard system. IMA J. Numer. Anal. 22 (2002) 11-71. | MR 1880052 | Zbl 1036.76030
and ,[3] Finite element approximation of the Cahn-Hilliard equation with degenerate mobility. SIAM J. Numer. Anal. 37 (1999) 286-318. | MR 1742748 | Zbl 0947.65109
, and ,[4] On fully practical finite element approximations of degenerate Cahn-Hilliard systems. ESAIM: M2AN 35 (2001) 713-748. | Numdam | MR 1863277 | Zbl 0987.35071
, and ,[5] The Cahn-Hilliard gradient theory for phase separation with nonsmooth free energy. II. Numerical analysis. Eur. J. Appl. Math. 3 (1992) 147-179. | MR 1166255 | Zbl 0810.35158
and ,[6] Numerical analysis of a model for phase separation of a multi-component alloy. IMA J. Numer. Anal. 16 (1996) 111-139. | MR 1367400 | Zbl 0857.65137
, and ,[7] A theoretical and numerical model for the study of incompressible mixture flows. Comput. Fluids 31 (2002) 41-68. | Zbl 1057.76060
,[8] Study of a three component Cahn-Hilliard flow model. ESAIM: M2AN 40 (2006) 653-687. | Numdam | MR 2274773 | Zbl 1173.35527
and ,[9] A local adaptive refinement method with multigrid preconditioning illustrated by multiphase flows simulations, in CANUM 2008, ESAIM Proc. 27, EDP Sciences, Les Ulis (2009) 15-53. | MR 2562636 | Zbl 1167.76019
, , and ,[10] Cahn-Hilliard/Navier-Stokes model for the simulation of three-phase flows. Transp. Porous Media 82 (2010) 463-483. | MR 2646853
, , , and ,[11] Nonlinear functional analysis. Springer-Verlag (1985). | MR 787404 | Zbl 0559.47040
,[12] Numerical analysis of a continuum model of phase transition. SIAM J. Numer. Anal. 28 (1991) 1310-1322. | MR 1119272 | Zbl 0744.65089
and ,[13] The Cahn-Hilliard model for the kinetics of phase separation, in Mathematical models for phase change problems, Óbidos, 1988, Internat. Ser. Numer. Math. 88, Birkhäuser, Basel (1989) 35-73. | MR 1038064 | Zbl 0692.73003
,[14] Diffusional phase transitions in multicomponent systems with a concentration dependent mobility matrix. Physica D 109 (1997) 242-256. | MR 1491351 | Zbl 1194.35225
and ,[15] A generalised diffusion equation for phase separation of a multi-component mixture with interfacial free energy. IMA Preprint Series # 887 (1991).
and ,[16] The global dynamics of discrete semilinear parabolic equations. SIAM J. Numer. Anal. 30 (1993) 1622-1663. | MR 1249036 | Zbl 0792.65066
and ,[17] Theory and Pratice of Finite Elements, Applied Mathematical Sciences 159. Springer (2004). | MR 2050138 | Zbl 1059.65103
and ,[18] Unconditionally gradient stable time marching the Cahn-Hilliard equation, in Computational and mathematical models of microstructural evolution, San Francisco, CA, 1998, Mater. Res. Soc. Sympos. Proc. 529, MRS, Warrendale, PA (1998) 39-46. | MR 1676409
,[19] Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows. SIAM J. Numer. Anal. 44 (2006) 1049-1072. | MR 2231855 | Zbl pre05167765
,[20] Analysis of finite element approximations of a phase field model for two-phase fluids. Math. Comp. 76 (2007) 539-571. | MR 2291827 | Zbl 1111.76028
, and ,[21] Second order phase field asymptotics for multi-component systems. Interface Free Boundaries 8 (2006) 131-157. | MR 2256839 | Zbl 1106.35116
and ,[22] A multiphase field concept: numerical simulations of moving phase boundaries and multiple junctions. SIAM J. Appl. Math. 60 (2000) 295-315. | MR 1740846 | Zbl 0942.35095
, and ,[23] Phase field modeling and simulation of three-phase flows. Interfaces Free Boundaries 7 (2005) 435-466. | MR 2191695 | Zbl 1100.35088
and ,[24] Conservative multigrid methods for Cahn-Hilliard fluids. J. Comput. Phys. 193 (2004) 511-543. | MR 2030475 | Zbl 1109.76348
, and ,[25] Conservative multigrid methods for ternary Cahn-Hilliard systems. Commun. Math. Sci. 2 (2004) 53-77. | MR 2082819 | Zbl 1085.65093
, and ,[26] Échanges de masse et de chaleur entre deux phases liquides stratifiées dans un écoulement à bulles. Mathématiques appliquées, Université de Provence, France (2006).
,[27] A second-order accurate non-linear difference scheme for the n-component Cahn-Hilliard system. Physica A 387 (2008) 4787-4799. | MR 2587975
and ,[28] Multicomponent alloy solidification: Phase-field modeling and simulations. Phys. Rev. E 71 (2005) 041609.
, and ,[29] PELICANS, Collaborative Development environment, https://gforge.irsn.fr/gf/project/pelicans/.
[30] Molecular theory of capillarity. Clarendon Press (1982).
and ,[31] Material effects on multiphase phenomena in late phases of severe accidents of nuclear reactors. Multiph. Sci. Technol. 12 (2000) 117-257.
and ,[32] Compact sets in the space Lp(0, T; B). Ann. Mat. Pura Appl. 146 (1987) 65-96. | MR 916688 | Zbl 0629.46031
,