This study is mainly dedicated to the development and analysis of non-overlapping domain decomposition methods for solving continuous-pressure finite element formulations of the Stokes problem. These methods have the following special features. By keeping the equations and unknowns unchanged at the cross points, that is, points shared by more than two subdomains, one can interpret them as iterative solvers of the actual discrete problem directly issued from the finite element scheme. In this way, the good stability properties of continuous-pressure mixed finite element approximations of the Stokes system are preserved. Estimates ensuring that each iteration can be performed in a stable way as well as a proof of the convergence of the iterative process provide a theoretical background for the application of the related solving procedure. Finally some numerical experiments are given to demonstrate the effectiveness of the approach, and particularly to compare its efficiency with an adaptation to this framework of a standard FETI-DP method.
@article{M2AN_2011__45_4_675_0, author = {Benhassine, Hani and Bendali, Abderrahmane}, title = {A non-overlapping domain decomposition method for continuous-pressure mixed finite element approximations of the Stokes problem}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {45}, year = {2011}, pages = {675-696}, doi = {10.1051/m2an/2010070}, mrnumber = {2804655}, zbl = {1267.76022}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2011__45_4_675_0} }
Benhassine, Hani; Bendali, Abderrahmane. A non-overlapping domain decomposition method for continuous-pressure mixed finite element approximations of the Stokes problem. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 45 (2011) pp. 675-696. doi : 10.1051/m2an/2010070. http://gdmltest.u-ga.fr/item/M2AN_2011__45_4_675_0/
[1] Domain decomposition preconditioners for p and hp finite element approximation of Stokes equations. Comput. Methods Appl. Mech. Eng. 175 (1999) 243-266. | MR 1702213 | Zbl 0934.76040
and ,[2] Méthodes de décomposition de domaine et éléments finis nodaux pour la résolution de l'équation d'Helmholtz. C. R. Acad. Sci. Paris Sér. I 339 (2004) 229-234. | MR 2078080 | Zbl 1049.65141
and ,[3] Non-overlapping domain decomposition method for a nodal finite element method. Numer. Math. 103 (2006) 515-537. | MR 2221060 | Zbl 1099.65122
and ,[4] A finite element for the numerical solution of viscous incompressible flows. J. Comput. Phys. 30 (1979) 181-201. | MR 528199 | Zbl 0395.76040
and ,[5] Techniques de décompositions de domaine et méthode d'équations intégrales. Ph.D. Thesis, INSA, Toulouse (2002).
,[6] An analysis of the BEM-FEM non-overlapping domain decomposition method for a scattering problem. J. Comput. Appl. Math. 204 (2007) 282- 291. | MR 2324457 | Zbl 1117.65151
,[7] The mathematical theory of finite element methods. Springer-Verlag, New York (2002). | MR 1894376 | Zbl 0804.65101
and ,[8] Mixed and hybrid finite element methods. Springer-Verlag, New York (1991). | MR 1115205 | Zbl 0788.73002
and ,[9] On the domain decomposition method for the Stokes Problem with continuous pressure. Numer. Methods Partial Differ. Equ. 16 (2000) 84-106. | MR 1727583 | Zbl 0965.76040
and ,[10] The finite element method for elliptic problems. North-Holland, Amsterdam (1978). | MR 520174 | Zbl 0511.65078
,[11] T. Chacón Rebollo and E. Chacón Vera, A non-overlapping domain decomposition method for the Stokes equations via a penalty term on the interface. C. R. Acad. Sci. Paris Sér. I 334 (2002) 221-226. | MR 1891063 | Zbl 1078.76543
[12] Study of a non-overlapping domain decomposition method: Poisson and Stokes problems. Appl. Numer. Math. 48 (2004) 169-194. | MR 2029329 | Zbl 1056.65131
and ,[13] Domain decomposition method for harmonic wave propagation: a general presentation. Comput. Methods Appl. Mech. Eng. 184 (2000) 171-211. | MR 1764190 | Zbl 0965.65134
, and ,[14] Domain decomposition method and the Helmholtz problem, in Mathematical and Numerical Aspect of Wave Propagation Phenomena, SIAM, Philadelphia (1991) 44-52. | MR 1105979 | Zbl 0814.65113
,[15] Robin-Robin domain decomposition methods for the Stokes-Darcy Coupling. SIAM J. Numer. Anal. 45 (2007) 1246-1268. | MR 2318811 | Zbl 1139.76030
, and ,[16] A method of finite element tearing and interconnecting and its parallel solution alghorithm. Int. J. Numer. Methods Eng. 32 (1991) 1205-1227. | Zbl 0758.65075
and ,[17] FETI-DP: a dual-primal unified FETI method-part I: A faster alternative to the two-level FETI method. Int. J. Numer. Meth. Engng. 50 (2001) 1523-1544. | MR 1813746 | Zbl 1008.74076
, , , and ,[18] Finite Element Methods For Navier-Stokes Equations. Springer-Verlag, Berlin-Heidelberg (1986). | MR 851383 | Zbl 0585.65077
and ,[19] A discontinuous Galerkin method with non-overlapping domain decomposition for the Stokes and Navier-Stokes problems. Math. Comp. 74 (2004) 53-84. | MR 2085402 | Zbl 1057.35029
, and ,[20] Non-overlapping domain decomposition methods in structural mechanics. Arch. Comput. Meth. Engng. 13 (2006) 515-572. | MR 2303317 | Zbl 1171.74041
and ,[21] Gwynllyw and T.N. Phillips, On the enforcement of the zero mean pressure condition in the spectral element approximation of the Stokes Problem. Comput. Methods Appl. Mech. Eng. 195 (2006) 1027-1049. | MR 2195296 | Zbl 1176.76090
.[22] A Neumann-Dirichlet preconditioner for a FETI-DP formulation of the two dimensional Stokes problem with mortar methods. SIAM J. Sci. Comput. 28 (2006) 1133-1152. | MR 2240807 | Zbl 1114.65141
and ,[23] A FETI-DP formulation for the Stokes problem without primal pressure components. SIAM J. Numer. Anal. 47 (2010) 4142-4162. | MR 2585182 | Zbl 1275.76160
, and ,[24] Overlapping Schwarz methods for elasticity and Stokes problems. Comput. Methods Appl. Mech. Eng. 165 (1998) 233-245. | MR 1663528 | Zbl 0948.74077
and ,[25] Non-overlapping domain decomposition methods for adaptive hp approximations for the Stokes problem with discontinuous pressure fields. Comput. Methods Appl. Mech. Eng. 145 (1997) 361-379. | MR 1456020 | Zbl 0891.76053
and ,[26] A Dual-Primal FETI methods for incompressible Stokes equations. Numer. Math. 102 (2005) 257-275. | Zbl 1185.76813
,[27] On the Schwarz alternating method III: A variant for non-overlapping subdomains, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equation, SIAM, Philadelphia (1990) 202-223. | MR 1064345 | Zbl 0704.65090
,[28] A nonoverlapping domain decomposition method for stabilised finite element approximations of the Oseen equations. J. Comput. Appl. Math. 132 (2001) 211-236. | MR 1840624 | Zbl 1051.76035
, and ,[29] On the convergence of a dual primal substructuring method. Numer. Math. 88 (2001) 543-558. | MR 1835470 | Zbl 1003.65126
and ,[30] Relaxation procedure for domain decomposition methods using finite elements. Numer. Math. 55 (1989) 575-589. | MR 998911 | Zbl 0661.65111
and ,[31] A nonoverlapping domain decomposition method for the Oseen equations. Math. Models Methods Appl. Sci. 8 (1998) 1091-1117. | MR 1646527 | Zbl 0939.65137
and ,[32] An iterative substructuring method for div-stable finite element approximation of the Oseen problem. Computing 67 (2001) 91-117. | MR 1867355 | Zbl 0999.76082
, and ,[33] Balancing Neumann-Neumann methods for incompressible Stokes equations. Commun. Pure Appl. Math. 55 (2002) 302-335. | MR 1866366 | Zbl 1024.76025
and ,[34] Domain decomposition methods for partial differential equations. Oxford University Press Inc., New York (1999). | MR 1857663 | Zbl 0931.65118
and ,[35] Domain decomposition methods for the steady Navier-Stokes equations, in 11th International Conference on Domain Decomposition Methods (London, 1998), DDM.org, Augsburg (1999) 330-340.
,[36] Iterative Methods for Sparse Linear Systems. PWS Publishing Company, Boston (1996). | Zbl 1031.65047
,[37] An extension of the FETI domain decomposition method for incompressible and nearly incompressible problems. Comput. Methods Appl. Mech. Eng. 192 (2003) 3409-3429. | Zbl 1054.74739
, and ,