We consider multiscale systems for which only a fine-scale model describing the evolution of individuals (atoms, molecules, bacteria, agents) is given, while we are interested in the evolution of the population density on coarse space and time scales. Typically, this evolution is described by a coarse Fokker-Planck equation. In this paper, we consider a numerical procedure to compute the solution of this Fokker-Planck equation directly on the coarse level, based on the estimation of the unknown parameters (drift and diffusion) using only appropriately chosen realizations of the fine-scale, individual-based system. As these parameters might be space- and time-dependent, the estimation is performed in every spatial discretization point and at every time step. If the fine-scale model is stochastic, the estimation procedure introduces noise on the coarse level. We investigate stability conditions for this procedure in the presence of this noise and present an analysis of the propagation of the estimation error in the numerical solution of the coarse Fokker-Planck equation.
@article{M2AN_2011__45_3_541_0, author = {Frederix, Yves and Samaey, Giovanni and Roose, Dirk}, title = {An analysis of noise propagation in the multiscale simulation of coarse Fokker-Planck equations}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {45}, year = {2011}, pages = {541-561}, doi = {10.1051/m2an/2010066}, mrnumber = {2804650}, zbl = {1269.82051}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2011__45_3_541_0} }
Frederix, Yves; Samaey, Giovanni; Roose, Dirk. An analysis of noise propagation in the multiscale simulation of coarse Fokker-Planck equations. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 45 (2011) pp. 541-561. doi : 10.1051/m2an/2010066. http://gdmltest.u-ga.fr/item/M2AN_2011__45_3_541_0/
[1] Maximum likelihood estimation of discretely sampled diffusions: A closed-form approximation approach. Econometrica 70 (2002) 223-262. | MR 1926260 | Zbl 1104.62323
,[2] Multiscale dynamics of biological cells with chemotactic interactions: From a discrete stochastic model to a continuous description. Phys. Rev. E 73 (2006) 051901. | MR 2242588
, , and ,[3] W. E and B. Engquist, The heterogeneous multi-scale methods. Commun. Math. Sci. 1 (2003) 87-132. | Zbl 1093.35012
[4] W. E, D. Liu and E. Vanden-Eijnden, Analysis of multiscale methods for stochastic differential equations. Commun. Pure Appl. Math. 58 (2005) 1544-1585. | MR 2165382 | Zbl 1080.60060
[5] W. E, B. Engquist, X. Li, W. Ren and E. Vanden-Eijnden, Heterogeneous multiscale methods: A review. Commun. Comput. Phys. 2 (2007) 367-450. | MR 2314852 | Zbl 1164.65496
[6] From signal transduction to spatial pattern formation in E. coli: A paradigm for multiscale modeling in biology. SIAM Multiscale Model. Simul. 3 (2005) 362-394. | MR 2122993 | Zbl 1073.35205
and ,[7] A computational strategy for multiscale systems with applications to Lorenz 96 model. J. Comput. Phys. 200 (2004) 605-638. | MR 2095278 | Zbl 1058.65065
and ,[8] A drift-filtered approach to diffusion estimation for multiscale processes, in Coping with complexity: model reduction and data analysis, Lecture Notes in Computational Science and Engineering 75, Springer-Verlag (2010). | MR 2757582
and ,[9] Lifting in equation-free methods for molecular dynamics simulations of dense fluids. Discrete Continuous Dyn. Syst. Ser. B 11 (2009) 855-874. | MR 2505650 | Zbl pre05574125
, , , , and ,[10] Projective integration methods for distributions. Technical report, NEC Research Institute (2001).
,[11] Projecting to a slow manifold: Singularly perturbed systems and legacy codes. SIAM J. Appl. Dyn. Syst. 4 (2005) 711-732. | MR 2176163 | Zbl 1170.34343
, , and ,[12] Extracting macroscopic dynamics: model problems and algorithms. Nonlinearity 17 (2004) R55-R127. | MR 2097022 | Zbl 1073.82038
, and ,[13] Toeplitz and circulant matrices: A review. Found. Trends Commun. Inf. Theory 2 (2005) 155-239. | Zbl 1143.15305
,[14] On a variance reduction technique for micro-macro simulations of polymeric fluids. J. Non-Newton. Fluid Mech. 122 (2004) 91-106. | Zbl 1143.76333
, and ,[15] Equation-free multiscale computation: Algorithms and applications. Ann. Rev. Phys. Chem. 60 (2009) 321-344.
and ,[16] Equation-free, coarse-grained multiscale computation: Enabling microscopic simulators to perform system-level analysis. Commun. Math. Sci. 1 (2003) 715-762. | MR 2041455 | Zbl 1086.65066
, , , , and ,[17] Brownian configuration fields and variance reduced CONNFFESSIT. J. Non-Newton. Fluid Mech. 70 (1997) 255-261.
, and ,[18] Multiscale Methods: Averaging and Homogenization, Texts in Applied Mathematics 53. Springer, New York (2007). | MR 2382139 | Zbl 1160.35006
and ,[19] Parameter estimation for multiscale diffusions. J. Stat. Phys. 127 (2007) 741-781. | MR 2319851 | Zbl 1137.82016
and ,[20] Remarks on drift estimation for diffusion processes. SIAM Multiscale Model. Simul. 8 (2009) 69-95. | MR 2575045 | Zbl 1183.62145
, and ,[21] The Fokker-Planck Equation: Methods of Solutions and Applications. Springer Series in Synergetics, Second Edition, Springer (1989). | MR 987631 | Zbl 0665.60084
,[22] Simulating individual-based models of bacterial chemotaxis with asymptotic variance reduction. INRIA, inria-00425065, available at http://hal.inria.fr/inria-00425065/fr/ (2009). | Zbl 1291.35417
and ,[23] Asymptotic methods in the theory of stochastic differential equations, Translations of mathematical monographs 78. AMS, Providence (1999). | Zbl 0695.60055
,[24] Elimination of fast variables. Phys. Rep. 124 (1985) 69-160. | MR 795762
,[25] Mesoscale analysis of the equation-free constrained runs initialization scheme. SIAM Multiscale Model. Simul. 6 (2007) 1234-1255. | MR 2393033 | Zbl 1248.76121
, and ,[26] Numerical techniques for multi-scale dynamical systems with stochastic effects. Commun. Math. Sci. 1 (2003) 385-391. | MR 1980483 | Zbl 1088.60060
,